Type:
Class
Constants:
I
:
f_complex_new_bang2(rb_cComplex, ZERO, ONE)
The imaginary unit.
A complex number can be represented as a paired real number with imaginary unit; a+bi. Where a is real part, b is imaginary part and i is imaginary unit. Real a equals complex a+0i mathematically.
In ruby, you can create complex object with Complex, ::rect, ::polar or #to_c method.
1 2 3 4 | Complex( 1 ) #=> (1+0i) Complex( 2 , 3 ) #=> (2+3i) Complex.polar( 2 , 3 ) #=> (-1.9799849932008908+0.2822400161197344i) 3 .to_c #=> (3+0i) |
You can also create complex object from floating-point numbers or strings.
1 2 3 4 5 6 7 8 9 | Complex( 0 . 3 ) #=> (0.3+0i) Complex( '0.3-0.5i' ) #=> (0.3-0.5i) Complex( '2/3+3/4i' ) #=> ((2/3)+(3/4)*i) Complex( '1@2' ) #=> (-0.4161468365471424+0.9092974268256817i) 0 . 3 .to_c #=> (0.3+0i) '0.3-0.5i' .to_c #=> (0.3-0.5i) '2/3+3/4i' .to_c #=> ((2/3)+(3/4)*i) '1@2' .to_c #=> (-0.4161468365471424+0.9092974268256817i) |
A complex object is either an exact or an inexact number.
1 2 | Complex( 1 , 1 ) / 2 #=> ((1/2)+(1/2)*i) Complex( 1 , 1 ) / 2 . 0 #=> (0.5+0.5i) |