IPv6 protocol family
Class Socket
provides access to the
underlying operating system socket implementations. It can be used to
provide more operating system specific functionality than the
protocol-specific socket classes.
The constants defined under Socket::Constants are also defined under Socket. For example, Socket::AF_INET is usable as well as Socket::Constants::AF_INET. See Socket::Constants for the list of constants.
What's a socket?
Sockets are endpoints of a bidirectionnal communication channel. Sockets can communicate within a process, between processes on the same machine or between different machines. There are many types of socket: TCPSocket, UDPSocket or UNIXSocket for example.
Sockets have their own vocabulary:
domain: The family of protocols:
-
Socket::PF_INET
-
Socket::PF_INET6
-
Socket::PF_UNIX
-
etc.
type: The type of communications between the two endpoints, typically
-
Socket::SOCK_STREAM
-
Socket::SOCK_DGRAM.
protocol: Typically zero. This may be used to identify a variant of a protocol.
hostname: The identifier of a network interface:
-
a string (hostname, IPv4 or IPv6 adress or
broadcast
which specifies a broadcast address) -
a zero-length string which specifies INADDR_ANY
-
an integer (interpreted as binary address in host byte order).
Quick start
Many of the classes, such as TCPSocket, UDPSocket or UNIXSocket, ease the use of sockets comparatively to the equivalent C programming interface.
Let's create an internet socket using the IPv4 protocol in a C-like manner:
s = Socket.new Socket::AF_INET, Socket::SOCK_STREAM s.connect Socket.pack_sockaddr_in(80, 'example.com')
You could also use the TCPSocket class:
s = TCPSocket.new 'example.com', 80
A simple server might look like this:
require 'socket' server = TCPServer.new 2000 # Server bound to port 2000 loop do client = server.accept # Wait for a client to connect client.puts "Hello !" client.puts "Time is #{Time.now}" client.close end
A simple client may look like this:
require 'socket' s = TCPSocket.new 'localhost', 2000 while line = s.gets # Read lines from socket puts line # and print them end s.close # close socket when done
Exception Handling
Ruby's Socket implementation raises exceptions based on the error generated by the system dependent implementation. This is why the methods are documented in a way that isolate Unix-based system exceptions from Windows based exceptions. If more information on a particular exception is needed, please refer to the Unix manual pages or the Windows WinSock reference.
Convenience methods
Although the general way to create socket is ::new, there are several methods of socket creation for most cases.
- TCP client socket
- TCP server socket
- UNIX client socket
- UNIX server socket
Documentation by
-
Zach Dennis
-
Sam Roberts
-
Programming Ruby from The Pragmatic Bookshelf.
Much material in this documentation is taken with permission from Programming Ruby from The Pragmatic Bookshelf.