tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.name
tf.contrib.layers.one_hot_encoding(*args, **kwargs) Transform numeric labels into onehot_labels using tf.one_hot.
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.clone(name=None, **dist_args)
tf.contrib.crf.CrfForwardRnnCell.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args:
tf.contrib.distributions.Mixture.sample_n(n, seed=None, name='sample_n') Generate n samples.
tf.contrib.distributions.MultivariateNormalCholesky.event_shape(name='event_shape') Shape of a single sample from a single batch
tf.contrib.distributions.Mixture.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes.
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.entropy(name='entropy')
tf.contrib.framework.get_model_variables(scope=None, suffix=None) Gets the list of model variables, filtered by scope and/or suffix
tf.contrib.distributions.StudentT.__init__(df, mu, sigma, validate_args=False, allow_nan_stats=True, name='StudentT') Construct
Page 30 of 100