tf.contrib.distributions.StudentT.__init__(df, mu, sigma, validate_args=False, allow_nan_stats=True, name='StudentT')
Construct Student's t distributions.
The distributions have degree of freedom df, mean mu, and scale sigma.
The parameters df, mu, and sigma must be shaped in a way that supports broadcasting (e.g. df + mu + sigma is a valid operation).
Args:
-
df: Floating point tensor, the degrees of freedom of the distribution(s).dfmust contain only positive values. -
mu: Floating point tensor, the means of the distribution(s). -
sigma: Floating point tensor, the scaling factor for the distribution(s).sigmamust contain only positive values. Note thatsigmais not the standard deviation of this distribution. -
validate_args:Boolean, defaultFalse. Whether to assert thatdf > 0andsigma > 0. Ifvalidate_argsisFalseand inputs are invalid, correct behavior is not guaranteed. -
allow_nan_stats:Boolean, defaultTrue. IfFalse, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. IfTrue, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. -
name: The name to give Ops created by the initializer.
Raises:
-
TypeError: if mu and sigma are different dtypes.
Please login to continue.