tf.contrib.distributions.StudentT.__init__(df, mu, sigma, validate_args=False, allow_nan_stats=True, name='StudentT')
Construct Student's t distributions.
The distributions have degree of freedom df
, mean mu
, and scale sigma
.
The parameters df
, mu
, and sigma
must be shaped in a way that supports broadcasting (e.g. df + mu + sigma
is a valid operation).
Args:
-
df
: Floating point tensor, the degrees of freedom of the distribution(s).df
must contain only positive values. -
mu
: Floating point tensor, the means of the distribution(s). -
sigma
: Floating point tensor, the scaling factor for the distribution(s).sigma
must contain only positive values. Note thatsigma
is not the standard deviation of this distribution. -
validate_args
:Boolean
, defaultFalse
. Whether to assert thatdf > 0
andsigma > 0
. Ifvalidate_args
isFalse
and inputs are invalid, correct behavior is not guaranteed. -
allow_nan_stats
:Boolean
, defaultTrue
. IfFalse
, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. IfTrue
, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. -
name
: The name to give Ops created by the initializer.
Raises:
-
TypeError
: if mu and sigma are different dtypes.
Please login to continue.