tf.contrib.distributions.MultivariateNormalDiag.mu

tf.contrib.distributions.MultivariateNormalDiag.mu

2016-10-14 12:58:13
tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.__init__(df, mu, sigma, validate_args=False, allow_nan_stats=True, name='StudentTWithAbsDfSoftplusSigma')

2016-10-14 13:02:37
tf.contrib.distributions.WishartFull.is_reparameterized

tf.contrib.distributions.WishartFull.is_reparameterized

2016-10-14 13:04:24
tf.contrib.distributions.Binomial.validate_args

tf.contrib.distributions.Binomial.validate_args Python boolean indicated possibly expensive checks are enabled.

2016-10-14 12:47:59
tf.contrib.distributions.Exponential.is_continuous

tf.contrib.distributions.Exponential.is_continuous

2016-10-14 12:52:03
tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mean()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mean(name='mean') Mean.

2016-10-14 12:58:39
tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats Python boolean describing behavior when a stat

2016-10-14 12:58:46
tf.contrib.distributions.BaseDistribution.sample_n()

tf.contrib.distributions.BaseDistribution.sample_n(n, seed=None, name='sample') Generate n samples.

2016-10-14 12:44:46
tf.contrib.distributions.BetaWithSoftplusAB.allow_nan_stats

tf.contrib.distributions.BetaWithSoftplusAB.allow_nan_stats Python boolean describing behavior when a stat is undefined.

2016-10-14 12:46:48
tf.contrib.distributions.LaplaceWithSoftplusScale.dtype

tf.contrib.distributions.LaplaceWithSoftplusScale.dtype The DType of Tensors handled by this Distribution

2016-10-14 12:56:02