tf.contrib.distributions.Exponential.name
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.name Name prepended to all ops created by this Distribution.

2025-01-10 15:47:30
tf.contrib.distributions.BetaWithSoftplusAB.dtype
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BetaWithSoftplusAB.dtype The DType of Tensors handled by this Distribution

2025-01-10 15:47:30
tf.contrib.distributions.InverseGamma.validate_args
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.InverseGamma.validate_args Python boolean indicated possibly expensive checks are enabled.

2025-01-10 15:47:30
tf.contrib.distributions.Exponential.allow_nan_stats
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.allow_nan_stats Python boolean describing behavior when a stat is undefined.

2025-01-10 15:47:30
tf.contrib.distributions.Exponential.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.__init__(lam, validate_args=False, allow_nan_stats=True, name='Exponential') Construct Exponential

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.clone()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.clone(name=None, **dist_args)

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.loss()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.loss(final_loss, name='Loss')

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.graph
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.graph

2025-01-10 15:47:30
tf.contrib.distributions.Chi2.mean()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Chi2.mean(name='mean') Mean.

2025-01-10 15:47:30
tf.contrib.distributions.GammaWithSoftplusAlphaBeta.sample_n()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.sample_n(n, seed=None, name='sample_n') Generate n samples.

2025-01-10 15:47:30