tf.contrib.distributions.LaplaceWithSoftplusScale.name
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.LaplaceWithSoftplusScale.name Name prepended to all ops created by this Distribution.

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.clone()
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.clone(name=None, **dist_args)

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.validate_args
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.validate_args Python boolean indicated possibly expensive checks are enabled

2025-01-10 15:47:30
tf.contrib.distributions.DirichletMultinomial.variance()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.DirichletMultinomial.variance(name='variance') Variance. Additional documentation

2025-01-10 15:47:30
tf.contrib.distributions.Multinomial.is_continuous
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Multinomial.is_continuous

2025-01-10 15:47:30
tf.contrib.distributions.BernoulliWithSigmoidP.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BernoulliWithSigmoidP.__init__(p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='BernoulliWithSigmoidP')

2025-01-10 15:47:30
tf.contrib.distributions.InverseGamma.validate_args
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.InverseGamma.validate_args Python boolean indicated possibly expensive checks are enabled.

2025-01-10 15:47:30
tf.contrib.distributions.Exponential.allow_nan_stats
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.allow_nan_stats Python boolean describing behavior when a stat is undefined.

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.dtype
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.dtype

2025-01-10 15:47:30
tf.contrib.distributions.Exponential.
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Exponential.__init__(lam, validate_args=False, allow_nan_stats=True, name='Exponential') Construct Exponential

2025-01-10 15:47:30