tf.contrib.learn.RunConfig.
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.RunConfig.__init__(master=None, task=None, num_ps_replicas=None, num_cores=0, log_device_placement=False, gpu_memory_fraction=1, cluster_spec=None,

2025-01-10 15:47:30
tensorflow::RandomAccessFile::Read()
  • References/Big Data/TensorFlow/TensorFlow C++/RandomAccessFile

virtual Status tensorflow::RandomAccessFile::Read(uint64 offset, size_t n, StringPiece *result, char *scratch) const =0 Reads

2025-01-10 15:47:30
tf.contrib.training.SequenceQueueingStateSaver.barrier
  • References/Big Data/TensorFlow/TensorFlow Python/Training

tf.contrib.training.SequenceQueueingStateSaver.barrier

2025-01-10 15:47:30
tf.TensorArray.handle
  • References/Big Data/TensorFlow/TensorFlow Python/TensorArray Operations

tf.TensorArray.handle The reference to the TensorArray.

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.event_shape(name='event_shape') Shape of a single sample from a single

2025-01-10 15:47:30
tensorflow::Env::GetSymbolFromLibrary()
  • References/Big Data/TensorFlow/TensorFlow C++/Env

virtual Status tensorflow::Env::GetSymbolFromLibrary(void *handle, const char *symbol_name, void **symbol)=0

2025-01-10 15:47:30
tf.contrib.learn.monitors.LoggingTrainable.every_n_post_step()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.LoggingTrainable.every_n_post_step(step, session) Callback after a step is finished or end()

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.distribution
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.distribution

2025-01-10 15:47:30
tf.contrib.learn.TensorFlowRNNClassifier.
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.TensorFlowRNNClassifier.__init__(rnn_size, n_classes, cell_type='gru', num_layers=1, input_op_fn=null_input_op_fn, initial_state=None, bidirectional=False

2025-01-10 15:47:30
tf.contrib.graph_editor.sgv_scope()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.sgv_scope(scope, graph) Make a subgraph from a name scope. Args:

2025-01-10 15:47:30