tf.contrib.learn.TensorFlowEstimator.fit()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.TensorFlowEstimator.fit(x, y, steps=None, monitors=None, logdir=None) Neural network model from provided model_fn

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.sample(sample_shape=(), seed=None, name='sample') Generate samples of

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalFull.name
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalFull.name Name prepended to all ops created by this Distribution.

2025-01-10 15:47:30
tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

class tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma StudentT with df = floor(abs(df)) and sigma =

2025-01-10 15:47:30
tf.contrib.distributions.BetaWithSoftplusAB.batch_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.BetaWithSoftplusAB.batch_shape(name='batch_shape') Shape of a single sample from a single event index

2025-01-10 15:47:30
tf.contrib.distributions.MultivariateNormalCholesky.event_shape()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.MultivariateNormalCholesky.event_shape(name='event_shape') Shape of a single sample from a single batch

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

2025-01-10 15:47:30
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.
  • References/Big Data/TensorFlow/TensorFlow Python/BayesFlow Stochastic Tensors

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.__init__(dist_cls, name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

2025-01-10 15:47:30
tensorflow::Env::NowMicros()
  • References/Big Data/TensorFlow/TensorFlow C++/Env

virtual uint64 tensorflow::Env::NowMicros()=0 Returns the number of micro-seconds since some fixed point in time. Only useful

2025-01-10 15:47:30
tf.ReaderBase.read_up_to()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.ReaderBase.read_up_to(queue, num_records, name=None) Returns up to num_records (key, value pairs) produced by a reader.

2025-01-10 15:47:30