tf.contrib.distributions.WishartFull.log_prob()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.WishartFull.log_prob(value, name='log_prob') Log probability density/mass function (depending on

2025-01-10 15:47:30
tf.contrib.framework.assign_from_checkpoint()
  • References/Big Data/TensorFlow/TensorFlow Python/Framework

tf.contrib.framework.assign_from_checkpoint(model_path, var_list) Creates an operation to assign specific variables from a checkpoint

2025-01-10 15:47:30
tf.contrib.distributions.QuantizedDistribution.prob()
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.QuantizedDistribution.prob(value, name='prob') Probability density/mass function (depending on

2025-01-10 15:47:30
tf.nn.rnn_cell.BasicRNNCell.state_size
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.BasicRNNCell.state_size

2025-01-10 15:47:30
tf.foldr()
  • References/Big Data/TensorFlow/TensorFlow Python/Higher Order Functions

tf.foldr(fn, elems, initializer=None, parallel_iterations=10, back_prop=True, swap_memory=False, name=None) foldr on the list

2025-01-10 15:47:30
tf.ReaderBase.read_up_to()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.ReaderBase.read_up_to(queue, num_records, name=None) Returns up to num_records (key, value pairs) produced by a reader.

2025-01-10 15:47:30
tf.contrib.rnn.LayerNormBasicLSTMCell.
  • References/Big Data/TensorFlow/TensorFlow Python/RNN

tf.contrib.rnn.LayerNormBasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, activation=tanh, layer_norm=True, norm_gain=1.0, norm_shift=0.0, dropout_keep_prob=1

2025-01-10 15:47:30
tf.contrib.graph_editor.make_list_of_op()
  • References/Big Data/TensorFlow/TensorFlow Python/Graph Editor

tf.contrib.graph_editor.make_list_of_op(ops, check_graph=True, allow_graph=True, ignore_ts=False) Convert ops to a list of tf

2025-01-10 15:47:30
tf.contrib.learn.monitors.GraphDump.begin()
  • References/Big Data/TensorFlow/TensorFlow Python/Monitors

tf.contrib.learn.monitors.GraphDump.begin(max_steps=None)

2025-01-10 15:47:30
tf.contrib.distributions.Mixture.parameters
  • References/Big Data/TensorFlow/TensorFlow Python/Statistical distributions

tf.contrib.distributions.Mixture.parameters Dictionary of parameters used by this Distribution.

2025-01-10 15:47:30