tf.contrib.rnn.LayerNormBasicLSTMCell.__init__(num_units, forget_bias=1.0, input_size=None, activation=tanh, layer_norm=True, norm_gain=1.0, norm_shift=0.0, dropout_keep_prob=1.0, dropout_prob_seed=None)
Initializes the basic LSTM cell.
Args:
-
num_units
: int, The number of units in the LSTM cell. -
forget_bias
: float, The bias added to forget gates (see above). -
input_size
: Deprecated and unused. -
activation
: Activation function of the inner states. -
layer_norm
: IfTrue
, layer normalization will be applied. -
norm_gain
: float, The layer normalization gain initial value. Iflayer_norm
has been set toFalse
, this argument will be ignored. -
norm_shift
: float, The layer normalization shift initial value. Iflayer_norm
has been set toFalse
, this argument will be ignored. -
dropout_keep_prob
: unit Tensor or float between 0 and 1 representing the recurrent dropout probability value. If float and 1.0, no dropout will be applied. -
dropout_prob_seed
: (optional) integer, the randomness seed.
Please login to continue.