tf.WholeFileReader.num_records_produced()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.WholeFileReader.num_records_produced(name=None) Returns the number of records this reader has produced. This

2025-01-10 15:47:30
tf.FixedLenFeature.
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.FixedLenFeature.__getstate__() Exclude the OrderedDict from pickling

2025-01-10 15:47:30
tf.RandomShuffleQueue.
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.RandomShuffleQueue.__init__(capacity, min_after_dequeue, dtypes, shapes=None, names=None, seed=None, shared_name=None, name='random_shuffle_queue')

2025-01-10 15:47:30
tf.IdentityReader.
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.IdentityReader.__init__(name=None) Create a IdentityReader. Args:

2025-01-10 15:47:30
tf.FixedLenFeature
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

class tf.FixedLenFeature Configuration for parsing a fixed-length input feature. To treat sparse

2025-01-10 15:47:30
tf.decode_json_example()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.decode_json_example(json_examples, name=None) Convert JSON-encoded Example records to binary protocol buffer strings.

2025-01-10 15:47:30
tf.TFRecordReader.reader_ref
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.TFRecordReader.reader_ref Op that implements the reader.

2025-01-10 15:47:30
tf.QueueBase.dequeue_up_to()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.QueueBase.dequeue_up_to(n, name=None) Dequeues and concatenates n elements from this queue.

2025-01-10 15:47:30
tf.FixedLenSequenceFeature.
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.FixedLenSequenceFeature.__getnewargs__() Return self as a plain tuple. Used by copy and pickle.

2025-01-10 15:47:30
tf.train.range_input_producer()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.train.range_input_producer(limit, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, name=None) Produces

2025-01-10 15:47:30