tf.TFRecordReader.
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.TFRecordReader.__init__(name=None, options=None) Create a TFRecordReader. Args:

2025-01-10 15:47:30
tf.train.batch_join()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.train.batch_join(tensors_list, batch_size, capacity=32, enqueue_many=False, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, shared_name=None, name=None)

2025-01-10 15:47:30
tf.TextLineReader.
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.TextLineReader.__init__(skip_header_lines=None, name=None) Create a TextLineReader. Args:

2025-01-10 15:47:30
tf.ReaderBase.num_records_produced()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.ReaderBase.num_records_produced(name=None) Returns the number of records this reader has produced. This

2025-01-10 15:47:30
tf.IdentityReader.num_records_produced()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.IdentityReader.num_records_produced(name=None) Returns the number of records this reader has produced. This

2025-01-10 15:47:30
tf.parse_tensor()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.parse_tensor(serialized, out_type, name=None) Transforms a serialized tensorflow.TensorProto proto into a Tensor.

2025-01-10 15:47:30
tf.train.shuffle_batch()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.train.shuffle_batch(tensors, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, allow_smaller_final_batch=False,

2025-01-10 15:47:30
tf.IdentityReader.reset()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.IdentityReader.reset(name=None) Restore a reader to its initial clean state. Args:

2025-01-10 15:47:30
tf.FixedLengthRecordReader.num_records_produced()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.FixedLengthRecordReader.num_records_produced(name=None) Returns the number of records this reader has produced.

2025-01-10 15:47:30
tf.TFRecordReader.num_work_units_completed()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.TFRecordReader.num_work_units_completed(name=None) Returns the number of work units this reader has finished processing.

2025-01-10 15:47:30