tf.train.input_producer()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.train.input_producer(input_tensor, element_shape=None, num_epochs=None, shuffle=True, seed=None, capacity=32, shared_name=None, summary_name=None, name=None)

2025-01-10 15:47:30
tf.TextLineReader.read()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.TextLineReader.read(queue, name=None) Returns the next record (key, value pair) produced by a reader. Will

2025-01-10 15:47:30
tf.IdentityReader.serialize_state()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.IdentityReader.serialize_state(name=None) Produce a string tensor that encodes the state of a reader. Not

2025-01-10 15:47:30
tf.QueueBase.dequeue()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.QueueBase.dequeue(name=None) Dequeues one element from this queue. If the queue is empty when

2025-01-10 15:47:30
tf.QueueBase.queue_ref
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.QueueBase.queue_ref The underlying queue reference.

2025-01-10 15:47:30
tf.IdentityReader.read_up_to()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.IdentityReader.read_up_to(queue, num_records, name=None) Returns up to num_records (key, value pairs) produced by a reader

2025-01-10 15:47:30
tf.ReaderBase.reset()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.ReaderBase.reset(name=None) Restore a reader to its initial clean state. Args:

2025-01-10 15:47:30
tf.TextLineReader.read_up_to()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.TextLineReader.read_up_to(queue, num_records, name=None) Returns up to num_records (key, value pairs) produced by a reader

2025-01-10 15:47:30
tf.QueueBase.
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.QueueBase.__init__(dtypes, shapes, names, queue_ref) Constructs a queue object from a queue reference. The

2025-01-10 15:47:30
tf.TFRecordReader.num_work_units_completed()
  • References/Big Data/TensorFlow/TensorFlow Python/Inputs and Readers

tf.TFRecordReader.num_work_units_completed(name=None) Returns the number of work units this reader has finished processing.

2025-01-10 15:47:30