tf.contrib.layers.avg_pool2d()

tf.contrib.layers.avg_pool2d(*args, **kwargs) Adds a 2D average pooling op. It is assumed that

2016-10-14 13:05:20
tf.contrib.layers.one_hot_encoding()

tf.contrib.layers.one_hot_encoding(*args, **kwargs) Transform numeric labels into onehot_labels using tf.one_hot.

2016-10-14 13:05:22
tf.contrib.layers.repeat()

tf.contrib.layers.repeat(inputs, repetitions, layer, *args, **kwargs) Applies the same layer with the same arguments repeatedly

2016-10-14 13:05:23
tf.contrib.layers.summarize_tensor()

tf.contrib.layers.summarize_tensor(tensor, tag=None) Summarize a tensor using a suitable summary type. This

2016-10-14 13:05:24
tf.contrib.layers.safe_embedding_lookup_sparse()

tf.contrib.layers.safe_embedding_lookup_sparse(embedding_weights, sparse_ids, sparse_weights=None, combiner=None, default_id=None, name=None, partition_strategy='div')

2016-10-14 13:05:23
tf.contrib.layers.apply_regularization()

tf.contrib.layers.apply_regularization(regularizer, weights_list=None) Returns the summed penalty by applying regularizer

2016-10-14 13:05:20
tf.contrib.layers.unit_norm()

tf.contrib.layers.unit_norm(*args, **kwargs) Normalizes the given input across the specified dimension to unit length.

2016-10-14 13:05:25
tf.contrib.layers.separable_convolution2d()

tf.contrib.layers.separable_convolution2d(*args, **kwargs) Adds a depth-separable 2D convolution with optional batch_norm layer

2016-10-14 13:05:23
tf.contrib.layers.convolution2d_transpose()

tf.contrib.layers.convolution2d_transpose(*args, **kwargs) Adds a convolution2d_transpose with an optional batch normalization

2016-10-14 13:05:21
tf.contrib.layers.optimize_loss()

tf.contrib.layers.optimize_loss(loss, global_step, learning_rate, optimizer, gradient_noise_scale=None, gradient_multipliers=None, clip_gradients=None, learning_rate_decay_fn=None

2016-10-14 13:05:23