tf.contrib.learn.train(graph, output_dir, train_op, loss_op, global_step_tensor=None, init_op=None, init_feed_dict=None, init_fn=None, log_every_steps=10, supervisor_is_chief=True
tf.contrib.learn.read_batch_features(file_pattern, batch_size, features, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, feature_queue_capacity=100
tf.contrib.learn.LinearClassifier.model_dir
tf.contrib.learn.TensorFlowRNNRegressor.__init__(rnn_size, cell_type='gru', num_layers=1, input_op_fn=null_input_op_fn, initial_state=None, bidirectional=False, sequence_length=None
tf.contrib.learn.DNNRegressor.__init__(hidden_units, feature_columns, model_dir=None, weight_column_name=None, optimizer=None, activation_fn=relu, dropout=None, gra
tf.contrib.learn.TensorFlowRNNRegressor.export(*args, **kwargs) Exports inference graph into given dir. (deprecated arguments)
tf.contrib.learn.LinearRegressor.model_dir
tf.contrib.learn.DNNRegressor.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) Incremental
tf.contrib.learn.TensorFlowRNNRegressor.get_params(deep=True) Get parameters for this estimator. Args:
tf.contrib.learn.evaluate(graph, output_dir, checkpoint_path, eval_dict, update_op=None, global_step_tensor=None, supervisor_master='', log_every_steps=10, feed_fn=None
Page 11 of 18