block_reduce
-
skimage.measure.block_reduce(image, block_size, func=, cval=0)
[source] -
Down-sample image by applying function to local blocks.
Parameters: image : ndarray
N-dimensional input image.
block_size : array_like
Array containing down-sampling integer factor along each axis.
func : callable
Function object which is used to calculate the return value for each local block. This function must implement an
axis
parameter such asnumpy.sum
ornumpy.min
.cval : float
Constant padding value if image is not perfectly divisible by the block size.
Returns: image : ndarray
Down-sampled image with same number of dimensions as input image.
Examples
>>> from skimage.measure import block_reduce >>> image = np.arange(3*3*4).reshape(3, 3, 4) >>> image array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]], [[24, 25, 26, 27], [28, 29, 30, 31], [32, 33, 34, 35]]]) >>> block_reduce(image, block_size=(3, 3, 1), func=np.mean) array([[[ 16., 17., 18., 19.]]]) >>> image_max1 = block_reduce(image, block_size=(1, 3, 4), func=np.max) >>> image_max1 array([[[11]], [[23]], [[35]]]) >>> image_max2 = block_reduce(image, block_size=(3, 1, 4), func=np.max) >>> image_max2 array([[[27], [31], [35]]])
Please login to continue.