block-reduce

block_reduce

skimage.measure.block_reduce(image, block_size, func=, cval=0) [source]

Down-sample image by applying function to local blocks.

Parameters:

image : ndarray

N-dimensional input image.

block_size : array_like

Array containing down-sampling integer factor along each axis.

func : callable

Function object which is used to calculate the return value for each local block. This function must implement an axis parameter such as numpy.sum or numpy.min.

cval : float

Constant padding value if image is not perfectly divisible by the block size.

Returns:

image : ndarray

Down-sampled image with same number of dimensions as input image.

Examples

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> from skimage.measure import block_reduce
>>> image = np.arange(3*3*4).reshape(3, 3, 4)
>>> image
array([[[ 0123],
        [ 4567],
        [ 89, 10, 11]],
       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]],
       [[24, 25, 26, 27],
        [28, 29, 30, 31],
        [32, 33, 34, 35]]])
>>> block_reduce(image, block_size=(3, 3, 1), func=np.mean)
array([[[ 16.17.18.19.]]])
>>> image_max1 = block_reduce(image, block_size=(1, 3, 4), func=np.max)
>>> image_max1
array([[[11]],
       [[23]],
       [[35]]])
>>> image_max2 = block_reduce(image, block_size=(3, 1, 4), func=np.max)
>>> image_max2
array([[[27],
        [31],
        [35]]])
doc_scikit_image
2025-01-10 15:47:30
Comments
Leave a Comment

Please login to continue.