block_reduce
-
skimage.measure.block_reduce(image, block_size, func=, cval=0)
[source] -
Down-sample image by applying function to local blocks.
Parameters: image : ndarray
N-dimensional input image.
block_size : array_like
Array containing down-sampling integer factor along each axis.
func : callable
Function object which is used to calculate the return value for each local block. This function must implement an
axis
parameter such asnumpy.sum
ornumpy.min
.cval : float
Constant padding value if image is not perfectly divisible by the block size.
Returns: image : ndarray
Down-sampled image with same number of dimensions as input image.
Examples
123456789101112131415161718192021222324>>>
from
skimage.measure
import
block_reduce
>>> image
=
np.arange(
3
*
3
*
4
).reshape(
3
,
3
,
4
)
>>> image
array([[[
0
,
1
,
2
,
3
],
[
4
,
5
,
6
,
7
],
[
8
,
9
,
10
,
11
]],
[[
12
,
13
,
14
,
15
],
[
16
,
17
,
18
,
19
],
[
20
,
21
,
22
,
23
]],
[[
24
,
25
,
26
,
27
],
[
28
,
29
,
30
,
31
],
[
32
,
33
,
34
,
35
]]])
>>> block_reduce(image, block_size
=
(
3
,
3
,
1
), func
=
np.mean)
array([[[
16.
,
17.
,
18.
,
19.
]]])
>>> image_max1
=
block_reduce(image, block_size
=
(
1
,
3
,
4
), func
=
np.
max
)
>>> image_max1
array([[[
11
]],
[[
23
]],
[[
35
]]])
>>> image_max2
=
block_reduce(image, block_size
=
(
3
,
1
,
4
), func
=
np.
max
)
>>> image_max2
array([[[
27
],
[
31
],
[
35
]]])
Please login to continue.