tf.contrib.learn.BaseEstimator.model_dir
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.BaseEstimator.model_dir

2025-01-10 15:47:30
tf.contrib.learn.Estimator.model_dir
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.Estimator.model_dir

2025-01-10 15:47:30
tf.contrib.learn.DNNClassifier.get_variable_names()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.DNNClassifier.get_variable_names() Returns list of all variable names in this model.

2025-01-10 15:47:30
tf.contrib.learn.DNNClassifier.model_dir
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.DNNClassifier.model_dir

2025-01-10 15:47:30
tf.contrib.learn.Estimator.config
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.Estimator.config

2025-01-10 15:47:30
tf.contrib.learn.read_batch_record_features()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.read_batch_record_features(file_pattern, batch_size, features, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, parser_num_threads=1

2025-01-10 15:47:30
tf.contrib.learn.DNNRegressor.
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.DNNRegressor.__repr__()

2025-01-10 15:47:30
tf.contrib.learn.BaseEstimator.evaluate()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.BaseEstimator.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) See

2025-01-10 15:47:30
tf.contrib.learn.LinearClassifier.predict()
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

tf.contrib.learn.LinearClassifier.predict(x=None, input_fn=None, batch_size=None, as_iterable=False) Runs inference to determine

2025-01-10 15:47:30
tf.contrib.learn.TensorFlowRNNRegressor
  • References/Big Data/TensorFlow/TensorFlow Python/Learn

class tf.contrib.learn.TensorFlowRNNRegressor TensorFlow RNN Regressor model.

2025-01-10 15:47:30