tf.contrib.learn.read_batch_record_features(file_pattern, batch_size, features, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, parser_num_threads=1, name='dequeue_record_examples')
Reads TFRecord, queues, batches and parses Example
proto.
See more detailed description in read_examples
.
Args:
-
file_pattern
: List of files or pattern of file paths containingExample
records. Seetf.gfile.Glob
for pattern rules. -
batch_size
: An int or scalarTensor
specifying the batch size to use. -
features
: Adict
mapping feature keys toFixedLenFeature
orVarLenFeature
values. -
randomize_input
: Whether the input should be randomized. -
num_epochs
: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever. NOTE - If specified, creates a variable that must be initialized, so call tf.initialize_local_variables() as shown in the tests. -
queue_capacity
: Capacity for input queue. -
reader_num_threads
: The number of threads to read examples. -
parser_num_threads
: The number of threads to parse examples. -
name
: Name of resulting op.
Returns:
A dict of Tensor
or SparseTensor
objects for each in features
.
Raises:
-
ValueError
: for invalid inputs.
Please login to continue.