tf.contrib.learn.read_batch_examples(file_pattern, batch_size, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, num_threads=1, read_batch_size=1, parse_fn=None, name=None)
Adds operations to read, queue, batch Example protos.
Given file pattern (or list of files), will setup a queue for file names, read Example proto using provided reader, use batch queue to create batches of examples of size batch_size.
All queue runners are added to the queue runners collection, and may be started via start_queue_runners.
All ops are added to the default graph.
Use parse_fn if you need to do parsing / processing on single examples.
Args:
-
file_pattern: List of files or pattern of file paths containingExamplerecords. Seetf.gfile.Globfor pattern rules. -
batch_size: An int or scalarTensorspecifying the batch size to use. -
reader: A function or class that returns an object withreadmethod, (filename tensor) -> (example tensor). -
randomize_input: Whether the input should be randomized. -
num_epochs: Integer specifying the number of times to read through the dataset. IfNone, cycles through the dataset forever. NOTE - If specified, creates a variable that must be initialized, so calltf.initialize_all_variables()as shown in the tests. -
queue_capacity: Capacity for input queue. -
num_threads: The number of threads enqueuing examples. -
read_batch_size: An int or scalarTensorspecifying the number of records to read at once -
parse_fn: Parsing function, takesExampleTensor returns parsed representation. IfNone, no parsing is done. -
name: Name of resulting op.
Returns:
String Tensor of batched Example proto.
Raises:
-
ValueError: for invalid inputs.
Please login to continue.