tf.segment_prod()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.segment_prod(data, segment_ids, name=None) Computes the product along segments of a tensor. Read

2025-01-10 15:47:30
tf.maximum()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.maximum(x, y, name=None) Returns the max of x and y (i.e. x > y ? x : y) element-wise. NOTE:

2025-01-10 15:47:30
tf.argmax()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.argmax(input, dimension, name=None) Returns the index with the largest value across dimensions of a tensor.

2025-01-10 15:47:30
tf.abs()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.abs(x, name=None) Computes the absolute value of a tensor. Given a tensor of real numbers x

2025-01-10 15:47:30
tf.reduce_all()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.reduce_all(input_tensor, reduction_indices=None, keep_dims=False, name=None) Computes the "logical and" of elements across

2025-01-10 15:47:30
tf.reduce_min()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.reduce_min(input_tensor, reduction_indices=None, keep_dims=False, name=None) Computes the minimum of elements across dimensions

2025-01-10 15:47:30
tf.igamma()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.igamma(a, x, name=None) Compute the lower regularized incomplete Gamma function Q(a, x). The

2025-01-10 15:47:30
tf.log()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.log(x, name=None) Computes natural logarithm of x element-wise. I.e., \(y = \log_e x\).

2025-01-10 15:47:30
tf.reduce_logsumexp()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.reduce_logsumexp(input_tensor, reduction_indices=None, keep_dims=False, name=None) Computes log(sum(exp(elements across dimensions

2025-01-10 15:47:30
tf.zeta()
  • References/Big Data/TensorFlow/TensorFlow Python/Math

tf.zeta(x, q, name=None) Compute the Hurwitz zeta function \(\zeta(x, q)\). The Hurwitz zeta function

2025-01-10 15:47:30