tf.nn.rnn_cell.DropoutWrapper.zero_state()

tf.nn.rnn_cell.DropoutWrapper.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args:

2016-10-14 13:08:29
tf.nn.rnn_cell.DropoutWrapper.output_size

tf.nn.rnn_cell.DropoutWrapper.output_size

2016-10-14 13:08:29
RNNCell

Contents Neural Network RNN CellsBase interface for all RNN Cellsclass tf.nn.rnn_cell.RNNCell RNN

2016-10-14 12:42:38
tf.nn.rnn_cell.BasicRNNCell.zero_state()

tf.nn.rnn_cell.BasicRNNCell.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args:

2016-10-14 13:08:28
tf.nn.rnn_cell.EmbeddingWrapper.zero_state()

tf.nn.rnn_cell.EmbeddingWrapper.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args:

2016-10-14 13:08:30
tf.nn.rnn_cell.InputProjectionWrapper.state_size

tf.nn.rnn_cell.InputProjectionWrapper.state_size

2016-10-14 13:08:32
tf.nn.rnn_cell.DropoutWrapper.

tf.nn.rnn_cell.DropoutWrapper.__call__(inputs, state, scope=None) Run the cell with the declared dropouts.

2016-10-14 13:08:29
tf.nn.rnn_cell.InputProjectionWrapper.

tf.nn.rnn_cell.InputProjectionWrapper.__call__(inputs, state, scope=None) Run the input projection and then the cell.

2016-10-14 13:08:32
tf.nn.rnn_cell.EmbeddingWrapper

class tf.nn.rnn_cell.EmbeddingWrapper Operator adding input embedding to the given cell. Note:

2016-10-14 13:08:30
tf.nn.rnn_cell.LSTMCell.

tf.nn.rnn_cell.LSTMCell.__init__(num_units, input_size=None, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=1

2016-10-14 13:08:33