tf.nn.rnn_cell.LSTMCell.
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.LSTMCell.__call__(inputs, state, scope=None) Run one step of LSTM. Args:

2025-01-10 15:47:30
tf.nn.rnn_cell.OutputProjectionWrapper
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

class tf.nn.rnn_cell.OutputProjectionWrapper Operator adding an output projection to the given cell. Note:

2025-01-10 15:47:30
tf.nn.rnn_cell.LSTMStateTuple
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

class tf.nn.rnn_cell.LSTMStateTuple Tuple used by LSTM Cells for state_size, zero_state, and output

2025-01-10 15:47:30
tf.nn.rnn_cell.LSTMCell
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

class tf.nn.rnn_cell.LSTMCell Long short-term memory unit (LSTM) recurrent network cell. The default

2025-01-10 15:47:30
tf.nn.rnn_cell.InputProjectionWrapper.
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.InputProjectionWrapper.__init__(cell, num_proj, input_size=None) Create a cell with input projection.

2025-01-10 15:47:30
tf.nn.rnn_cell.LSTMStateTuple.h
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.LSTMStateTuple.h Alias for field number 1

2025-01-10 15:47:30
tf.nn.rnn_cell.MultiRNNCell
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

class tf.nn.rnn_cell.MultiRNNCell RNN cell composed sequentially of multiple simple cells.

2025-01-10 15:47:30
tf.nn.rnn_cell.LSTMCell.output_size
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.LSTMCell.output_size

2025-01-10 15:47:30
tf.nn.rnn_cell.BasicLSTMCell.state_size
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.BasicLSTMCell.state_size

2025-01-10 15:47:30
tf.nn.rnn_cell.MultiRNNCell.
  • References/Big Data/TensorFlow/TensorFlow Python/Neural Network RNN Cells

tf.nn.rnn_cell.MultiRNNCell.__init__(cells, state_is_tuple=True) Create a RNN cell composed sequentially of a number of RNNCells

2025-01-10 15:47:30