tf.SparseTensorValue.
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.SparseTensorValue.__getstate__() Exclude the OrderedDict from pickling

2025-01-10 15:47:30
tf.sparse_concat()
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.sparse_concat(concat_dim, sp_inputs, name=None, expand_nonconcat_dim=False) Concatenates a list of SparseTensor

2025-01-10 15:47:30
tf.sparse_reorder()
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.sparse_reorder(sp_input, name=None) Reorders a SparseTensor into the canonical, row-major ordering.

2025-01-10 15:47:30
tf.SparseTensor.values
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.SparseTensor.values The non-zero values in the represented dense tensor. Returns:

2025-01-10 15:47:30
tf.sparse_tensor_to_dense()
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.sparse_tensor_to_dense(sp_input, default_value=0, validate_indices=True, name=None) Converts a SparseTensor into

2025-01-10 15:47:30
tf.SparseTensor.
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.SparseTensor.__div__(sp_x, y) Component-wise divides a SparseTensor by a dense Tensor. Limitation:

2025-01-10 15:47:30
tf.SparseTensorValue
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

class tf.SparseTensorValue SparseTensorValue(indices, values, shape)

2025-01-10 15:47:30
tf.SparseTensorValue.
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.SparseTensorValue.__repr__() Return a nicely formatted representation string

2025-01-10 15:47:30
tf.sparse_reduce_sum()
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.sparse_reduce_sum(sp_input, reduction_axes=None, keep_dims=False) Computes the sum of elements across dimensions of a SparseTensor

2025-01-10 15:47:30
tf.SparseTensorValue.indices
  • References/Big Data/TensorFlow/TensorFlow Python/Sparse Tensors

tf.SparseTensorValue.indices Alias for field number 0

2025-01-10 15:47:30