Defined in header <complex.h> | ||
---|---|---|
float complex ccoshf( float complex z ); | (1) | (since C99) |
double complex ccosh( double complex z ); | (2) | (since C99) |
long double complex ccoshl( long double complex z ); | (3) | (since C99) |
Defined in header <tgmath.h> | ||
#define cosh( z ) | (4) | (since C99) |
1-3) Computes the complex hyperbolic cosine of
z
. 4) Type-generic macro: If
z
has type long double complex
, ccoshl
is called. if z
has type double complex
, ccosh
is called, if z
has type float complex
, ccoshf
is called. If z
is real or integer, then the macro invokes the corresponding real function (coshf
, cosh
, coshl
). If z
is imaginary, then the macro invokes the corresponding real version of the function cos
, implementing the formula cosh(iy) = cos(y), and the return type is real.Parameters
z | - | complex argument |
Return value
If no errors occur, complex hyperbolic cosine of z
is returned.
Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
-
ccosh(conj(z)) == conj(ccosh(z))
-
ccosh(z) == ccosh(-z)
- If
z
is+0+0i
, the result is1+0i
- If
z
is+0+∞i
, the result isNaN±0i
(the sign of the imaginary part is unspecified) andFE_INVALID
is raised - If
z
is+0+NaNi
, the result isNaN±0i
(the sign of the imaginary part is unspecified) - If
z
isx+∞i
(for any finite non-zero x), the result isNaN+NaNi
andFE_INVALID
is raised - If
z
isx+NaNi
(for any finite non-zero x), the result isNaN+NaNi
andFE_INVALID
may be raised - If
z
is+∞+0i
, the result is+∞+0i
- If
z
is+∞+yi
(for any finite non-zero y), the result is+∞+cis(y)
- If
z
is+∞+∞i
, the result is±∞+NaNi
(the sign of the real part is unspecified) andFE_INVALID
is raised - If
z
is+∞+NaN
, the result is+∞+NaN
- If
z
isNaN+0i
, the result isNaN±0i
(the sign of the imaginary part is unspecified) - If
z
isNaN+yi
(for any finite non-zero y), the result isNaN+NaNi
andFE_INVALID
may be raised - If
z
isNaN+NaNi
, the result isNaN+NaNi
where cis(y) is cos(y) + i sin(y).
Notes
Mathematical definition of hyperbolic cosine is cosh z =
ez +e-z |
2 |
Hyperbolic cosine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2πi.
Example
#include <stdio.h> #include <math.h> #include <complex.h> int main(void) { double complex z = ccosh(1); // behaves like real cosh along the real line printf("cosh(1+0i) = %f%+fi (cosh(1)=%f)\n", creal(z), cimag(z), cosh(1)); double complex z2 = ccosh(I); // behaves like real cosine along the imaginary line printf("cosh(0+1i) = %f%+fi ( cos(1)=%f)\n", creal(z2), cimag(z2), cos(1)); }
Output:
cosh(1+0i) = 1.543081+0.000000i (cosh(1)=1.543081) cosh(0+1i) = 0.540302+0.000000i ( cos(1)=0.540302)
References
- C11 standard (ISO/IEC 9899:2011):
- 7.3.6.4 The ccosh functions (p: 193)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- G.6.2.4 The ccosh functions (p: 541)
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
- 7.3.6.4 The ccosh functions (p: 175)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- G.6.2.4 The ccosh functions (p: 476)
- G.7 Type-generic math <tgmath.h> (p: 480)
See also
(C99)(C99)(C99) | computes the complex hyperbolic sine (function) |
(C99)(C99)(C99) | computes the complex hyperbolic tangent (function) |
(C99)(C99)(C99) | computes the complex arc hyperbolic cosine (function) |
(C99)(C99) | computes hyperbolic cosine (ch(x)) (function) |
C++ documentation for cosh |
Please login to continue.