Defined in header <complex.h> | ||
---|---|---|
float complex cexpf( float complex z ); | (1) | (since C99) |
double complex cexp( double complex z ); | (2) | (since C99) |
long double complex cexpl( long double complex z ); | (3) | (since C99) |
Defined in header <tgmath.h> | ||
#define exp( z ) | (4) | (since C99) |
1-3) Computes the complex base-e exponential of
z
. 4) Type-generic macro: If
z
has type long double complex
, cexpl
is called. if z
has type double complex
, cexp
is called, if z
has type float complex
, cexpf
is called. If z
is real or integer, then the macro invokes the corresponding real function (expf
, exp
, expl
). If z
is imaginary, the corresponding complex argument version is called.Parameters
z | - | complex argument |
Return value
If no errors occur, e raised to the power of z
, ez
is returned.
Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
-
cexp(conj(z)) == conj(cexp(z))
- If
z
is±0+0i
, the result is1+0i
- If
z
isx+∞i
(for any finite x), the result isNaN+NaNi
andFE_INVALID
is raised. - If
z
isx+NaNi
(for any finite x), the result isNaN+NaNi
andFE_INVALID
may be raised. - If
z
is+∞+0i
, the result is+∞+0i
- If
z
is-∞+yi
(for any finite y), the result is+0+cis(y)
- If
z
is+∞+yi
(for any finite nonzero y), the result is+∞+cis(y)
- If
z
is-∞+∞i
, the result is±0±0i
(signs are unspecified) - If
z
is+∞+∞i
, the result is±∞+NaNi
andFE_INVALID
is raised (the sign of the real part is unspecified) - If
z
is-∞+NaNi
, the result is±0±0i
(signs are unspecified) - If
z
is+∞+NaNi
, the result is±∞+NaNi
(the sign of the real part is unspecified) - If
z
isNaN+0i
, the result isNaN+0i
- If
z
isNaN+yi
(for any nonzero y), the result isNaN+NaNi
andFE_INVALID
may be raised - If
z
isNaN+NaNi
, the result isNaN+NaNi
where cis(y) is cos(y) + i sin(y).
Notes
The complex exponential function ez
for z = x+iy equals to ex
cis(y), or, ex
(cos(y) + i sin(y)).
The exponential function is an entire function in the complex plane and has no branch cuts.
Example
#include <stdio.h> #include <math.h> #include <complex.h> int main(void) { double PI = acos(-1); double complex z = cexp(I * PI); // Euler's formula printf("exp(i*pi) = %.1f%+.1fi\n", creal(z), cimag(z)); }
Output:
exp(i*pi) = -1.0+0.0i
References
- C11 standard (ISO/IEC 9899:2011):
- 7.3.7.1 The cexp functions (p: 194)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- G.6.3.1 The cexp functions (p: 543)
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
- 7.3.7.1 The cexp functions (p: 176)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- G.6.3.1 The cexp functions (p: 478)
- G.7 Type-generic math <tgmath.h> (p: 480)
See also
(C99)(C99)(C99) | computes the complex natural logarithm (function) |
(C99)(C99) | computes e raised to the given power (ex) (function) |
C++ documentation for exp |
Please login to continue.