Defined in header <math.h> | ||
---|---|---|
float logbf( float arg ); | (1) | (since C99) |
double logb( double arg ); | (2) | (since C99) |
long double logbl( long double arg ); | (3) | (since C99) |
Defined in header <tgmath.h> | ||
#define logb( arg ) | (4) | (since C99) |
arg
, and returns it as a floating-point value. arg
has type long double
, logbl
is called. Otherwise, if arg
has integer type or the type double
, logb
is called. Otherwise, logbf
is called.Formally, the unbiased exponent is the signed integral part of log
r|arg| (returned by this function as a floating-point value), for non-zero arg, where r
is FLT_RADIX
. If arg
is subnormal, it is treated as though it was normalized.
Parameters
arg | - | floating point value |
Return value
If no errors occur, the unbiased exponent of arg
is returned as a signed floating-point value.
If a domain error occurs, an implementation-defined value is returned.
If a pole error occurs, -HUGE_VAL
, -HUGE_VALF
, or -HUGE_VALL
is returned.
Error handling
Errors are reported as specified in math_errhandling.
Domain or range error may occur if arg
is zero.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If
arg
is ±0, -∞ is returned andFE_DIVBYZERO
is raised. - If
arg
is ±∞, +∞ is returned - If
arg
is NaN, NaN is returned. - In all other cases, the result is exact (
FE_INEXACT
is never raised) and the current rounding mode is ignored
Notes
POSIX requires that a pole error occurs if arg
is ±0.
The value of the exponent returned by logb
is always 1 less than the exponent retuned by frexp
because of the different normalization requirements: for the exponent e
returned by logb
, |arg*r-e
| is between 1 and r
(typically between 1
and 2
), but for the exponent e
returned by frexp
, |arg*2-e
| is between 0.5
and 1
.
Example
Compares different floating-point decomposition functions.
#include <stdio.h> #include <math.h> #include <float.h> #include <fenv.h> #pragma STDC FENV_ACCESS ON int main(void) { double f = 123.45; printf("Given the number %.2f or %a in hex,\n", f, f); double f3; double f2 = modf(f, &f3); printf("modf() makes %.0f + %.2f\n", f3, f2); int i; f2 = frexp(f, &i); printf("frexp() makes %f * 2^%d\n", f2, i); i = logb(f); printf("logb()/logb() make %f * %d^%d\n", f/scalbn(1.0, i), FLT_RADIX, i); // error handling feclearexcept(FE_ALL_EXCEPT); printf("logb(0) = %f\n", logb(0)); if(fetestexcept(FE_DIVBYZERO)) puts(" FE_DIVBYZERO raised"); }
Possible output:
Given the number 123.45 or 0x1.edccccccccccdp+6 in hex, modf() makes 123 + 0.45 frexp() makes 0.964453 * 2^7 logb()/logb() make 1.928906 * 2^6 logb(0) = -Inf FE_DIVBYZERO raised
References
- C11 standard (ISO/IEC 9899:2011):
- 7.12.6.11 The logb functions (p: 246)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- F.10.3.11 The logb functions (p: 522)
- C99 standard (ISO/IEC 9899:1999):
- 7.12.6.11 The logb functions (p: 227)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- F.9.3.11 The logb functions (p: 459)
See also
(C99)(C99) | breaks a number into significand and a power of 2 (function) |
(C99)(C99)(C99) | extracts exponent of the given number (function) |
(C99)(C99)(C99)(C99)(C99)(C99) | computes efficiently a number times FLT_RADIX raised to a power (function) |
C++ documentation for logb |
Please login to continue.