This header is part of the algorithm library.
Functions
Non-modifying sequence operations | |
| (C++11)(C++11)(C++11) | checks if a predicate is true for all, any or none of the elements in a range (function template) |
| applies a function to a range of elements (function template) | |
| returns the number of elements satisfying specific criteria (function template) | |
| finds the first position where two ranges differ (function template) | |
| determines if two sets of elements are the same (function template) | |
| (C++11) | finds the first element satisfying specific criteria (function template) |
| finds the last sequence of elements in a certain range (function template) | |
| searches for any one of a set of elements (function template) | |
| finds the first two adjacent items that are equal (or satisfy a given predicate) (function template) | |
| searches for a range of elements (function template) | |
| searches for a number consecutive copies of an element in a range (function template) | |
Modifying sequence operations | |
| (C++11) | copies a range of elements to a new location (function template) |
| (C++11) | copies a number of elements to a new location (function template) |
| copies a range of elements in backwards order (function template) | |
| (C++11) | moves a range of elements to a new location (function template) |
| (C++11) | moves a range of elements to a new location in backwards order (function template) |
| assigns a range of elements a certain value (function template) | |
| assigns a value to a number of elements (function template) | |
| applies a function to a range of elements (function template) | |
| saves the result of a function in a range (function template) | |
| saves the result of N applications of a function (function template) | |
| removes elements satisfying specific criteria (function template) | |
| copies a range of elements omitting those that satisfy specific criteria (function template) | |
| replaces all values satisfying specific criteria with another value (function template) | |
| copies a range, replacing elements satisfying specific criteria with another value (function template) | |
| swaps the values of two objects (function template) | |
| swaps two ranges of elements (function template) | |
| swaps the elements pointed to by two iterators (function template) | |
| reverses the order of elements in a range (function template) | |
| creates a copy of a range that is reversed (function template) | |
| rotates the order of elements in a range (function template) | |
| copies and rotate a range of elements (function template) | |
| (until C++17)(C++11) | randomly re-orders elements in a range (function template) |
| removes consecutive duplicate elements in a range (function template) | |
| creates a copy of some range of elements that contains no consecutive duplicates (function template) | |
Partitioning operations | |
| (C++11) | determines if the range is partitioned by the given predicate (function template) |
| divides a range of elements into two groups (function template) | |
| (C++11) | copies a range dividing the elements into two groups (function template) |
| divides elements into two groups while preserving their relative order (function template) | |
| (C++11) | locates the partition point of a partitioned range (function template) |
Sorting operations (on sorted ranges) | |
| (C++11) | checks whether a range is sorted into ascending order (function template) |
| (C++11) | finds the largest sorted subrange (function template) |
| sorts a range into ascending order (function template) | |
| sorts the first N elements of a range (function template) | |
| copies and partially sorts a range of elements (function template) | |
| sorts a range of elements while preserving order between equal elements (function template) | |
| partially sorts the given range making sure that it is partitioned by the given element (function template) | |
Binary search operations (on sorted ranges) | |
| returns an iterator to the first element not less than the given value (function template) | |
| returns an iterator to the first element greater than a certain value (function template) | |
| determines if an element exists in a certain range (function template) | |
| returns range of elements matching a specific key (function template) | |
Set operations (on sorted ranges) | |
| merges two sorted ranges (function template) | |
| merges two ordered ranges in-place (function template) | |
| returns true if one set is a subset of another (function template) | |
| computes the difference between two sets (function template) | |
| computes the intersection of two sets (function template) | |
| computes the symmetric difference between two sets (function template) | |
| computes the union of two sets (function template) | |
Heap operations | |
| (C++11) | checks if the given range is a max heap (function template) |
| (C++11) | finds the largest subrange that is a max heap (function template) |
| creates a max heap out of a range of elements (function template) | |
| adds an element to a max heap (function template) | |
| removes the largest element from a max heap (function template) | |
| turns a max heap into a range of elements sorted in ascending order (function template) | |
Minimum/maximum operations | |
| returns the greater of the given values (function template) | |
| returns the largest element in a range (function template) | |
| returns the smaller of the given values (function template) | |
| returns the smallest element in a range (function template) | |
| (C++11) | returns the larger and the smaller of two elements (function template) |
| (C++11) | returns the smallest and the largest element in a range (function template) |
| returns true if one range is lexicographically less than another (function template) | |
| (C++11) | determines if a sequence is a permutation of another sequence (function template) |
| generates the next greater lexicographic permutation of a range of elements (function template) | |
| generates the next smaller lexicographic permutation of a range of elements (function template) | |
Synopsis
#include <initializer_list>
namespace std
{
// non-modifying sequence operations:
template <class InputIterator, class Predicate>
bool all_of(InputIterator first, InputIterator last, Predicate pred);
template <class InputIterator, class Predicate>
bool any_of(InputIterator first, InputIterator last, Predicate pred);
template <class InputIterator, class Predicate>
bool none_of(InputIterator first, InputIterator last, Predicate pred);
template<class InputIterator, class Function>
Function for_each(InputIterator first, InputIterator last, Function f);
template<class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last,
const T& value);
template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first, InputIterator last,
Predicate pred);
template<class InputIterator, class Predicate>
InputIterator find_if_not(InputIterator first, InputIterator last,
Predicate pred);
template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);
template<class InputIterator, class ForwardIterator>
InputIterator
find_first_of(InputIterator first1, InputIterator last1,
ForwardIterator first2, ForwardIterator last2);
template<class InputIterator, class ForwardIterator,
class BinaryPredicate>
InputIterator
find_first_of(InputIterator first1, InputIterator last1,
ForwardIterator first2, ForwardIterator last2,
BinaryPredicate pred);
template<class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first,
ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>
ForwardIterator adjacent_find(ForwardIterator first,
ForwardIterator last,
BinaryPredicate pred);
template<class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type
count(InputIterator first, InputIterator last, const T& value);
template<class InputIterator, class Predicate>
typename iterator_traits<InputIterator>::difference_type
count_if(InputIterator first, InputIterator last, Predicate pred);
template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);
template<class InputIterator1, class InputIterator2, class BinaryPredicate>
pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);
template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);
template<class InputIterator1, class InputIterator2, class BinaryPredicate>
bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);
template<class ForwardIterator1, class ForwardIterator2>
bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);
template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
bool is_permutation(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, BinaryPredicate pred);
template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 search(
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
ForwardIterator1 search(
ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);
template<class ForwardIterator, class Size, class T>
ForwardIterator search_n(ForwardIterator first, ForwardIterator last,
Size count, const T& value);
template<class ForwardIterator, class Size, class T, class BinaryPredicate>
ForwardIterator1 search_n(ForwardIterator first, ForwardIterator last,
Size count, const T& value,
BinaryPredicate pred);
// modifying sequence operations:
// copy:
template<class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first, InputIterator last,
OutputIterator result);
template<class InputIterator, class Size, class OutputIterator>
OutputIterator copy_n(InputIterator first, Size n,
OutputIterator result);
template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);
template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2 copy_backward(
BidirectionalIterator1 first, BidirectionalIterator1 last,
BidirectionalIterator2 result);
// move:
template<class InputIterator, class OutputIterator>
OutputIterator move(InputIterator first, InputIterator last,
OutputIterator result);
template<class BidirectionalIterator1, class BidirectionalIterator2>
BidirectionalIterator2 move_backward(
BidirectionalIterator1 first, BidirectionalIterator1 last,
BidirectionalIterator2 result);
// swap:
template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator2 swap_ranges(ForwardIterator1 first1,
ForwardIterator1 last1, ForwardIterator2 first2);
template<class ForwardIterator1, class ForwardIterator2>
void iter_swap(ForwardIterator1 a, ForwardIterator2 b);
template<class InputIterator, class OutputIterator, class UnaryOperation>
OutputIterator transform(InputIterator first, InputIterator last,
OutputIterator result, UnaryOperation op);
template<class InputIterator1, class InputIterator2, class OutputIterator,
class BinaryOperation>
OutputIterator transform(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op);
template<class ForwardIterator, class T>
void replace(ForwardIterator first, ForwardIterator last,
const T& old_value, const T& new_value);
template<class ForwardIterator, class Predicate, class T>
void replace_if(ForwardIterator first, ForwardIterator last,
Predicate pred, const T& new_value);
template<class InputIterator, class OutputIterator, class T>
OutputIterator replace_copy(InputIterator first, InputIterator last,
OutputIterator result,
const T& old_value, const T& new_value);
template<class InputIterator, class OutputIterator, class Predicate, class T>
OutputIterator replace_copy_if(InputIterator first, InputIterator last,
OutputIterator result,
Predicate pred, const T& new_value);
template<class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T& value);
template<class OutputIterator, class Size, class T>
OutputIterator fill_n(OutputIterator first, Size n, const T& value);
template<class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last,
Generator gen);
template<class OutputIterator, class Size, class Generator>
OutputIterator generate_n(OutputIterator first, Size n, Generator gen);
template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,
const T& value);
template<class ForwardIterator, class Predicate>
ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
Predicate pred);
template<class InputIterator, class OutputIterator, class T>
OutputIterator remove_copy(InputIterator first, InputIterator last,
OutputIterator result, const T& value);
template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);
template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);
template<class InputIterator, class OutputIterator>
OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator result);
template<class InputIterator, class OutputIterator, class BinaryPredicate>
OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator result, BinaryPredicate pred);
template<class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last);
template<class BidirectionalIterator, class OutputIterator>
OutputIterator reverse_copy(BidirectionalIterator first,
BidirectionalIterator last,
OutputIterator result);
template<class ForwardIterator>
ForwardIterator rotate(ForwardIterator first, ForwardIterator middle,
ForwardIterator last);
template<class ForwardIterator, class OutputIterator>
OutputIterator rotate_copy(
ForwardIterator first, ForwardIterator middle,
ForwardIterator last, OutputIterator result);
template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last);
template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last,
RandomNumberGenerator&& rand);
template<class RandomAccessIterator, class UniformRandomNumberGenerator>
void shuffle(RandomAccessIterator first,
RandomAccessIterator last,
UniformRandomNumberGenerator&& rand);
// partitions:
template <class InputIterator, class Predicate>
bool is_partitioned(InputIterator first, InputIterator last, Predicate pred);
template<class ForwardIterator, class Predicate>
ForwardIterator partition(ForwardIterator first,
ForwardIterator last,
Predicate pred);
template<class BidirectionalIterator, class Predicate>
BidirectionalIterator stable_partition(BidirectionalIterator first,
BidirectionalIterator last,
Predicate pred);
template <class InputIterator, class OutputIterator1,
class OutputIterator2, class Predicate>
pair<OutputIterator1, OutputIterator2>
partition_copy(InputIterator first, InputIterator last,
OutputIterator1 out_true, OutputIterator2 out_false,
Predicate pred);
template<class ForwardIterator, class Predicate>
ForwardIterator partition_point(ForwardIterator first,
ForwardIterator last,
Predicate pred);
// sorting and related operations:
// sorting:
template<class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);
template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);
template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first,
RandomAccessIterator middle,
RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void partial_sort(RandomAccessIterator first,
RandomAccessIterator middle,
RandomAccessIterator last, Compare comp);
template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator partial_sort_copy(
InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last);
template<class InputIterator, class RandomAccessIterator, class Compare>
RandomAccessIterator partial_sort_copy(
InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);
template<class ForwardIterator>
bool is_sorted(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
bool is_sorted(ForwardIterator first, ForwardIterator last,
Compare comp);
template<class ForwardIterator>
ForwardIterator is_sorted_until(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
ForwardIterator is_sorted_until(ForwardIterator first, ForwardIterator last,
Compare comp);
template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);
// binary search:
template<class ForwardIterator, class T>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const T& value);
template<class ForwardIterator, class T, class Compare>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);
template<class ForwardIterator, class T>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
const T& value);
template<class ForwardIterator, class T, class Compare>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);
template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last,
const T& value);
template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);
template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,
const T& value);
template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last,
const T& value, Compare comp);
// merge:
template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);
template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);
template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);
// set operations:
template<class InputIterator1, class InputIterator2>
bool includes(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>
bool includes(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2, Compare comp);
template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);
template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);
template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_intersection(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);
template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator set_intersection(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);
template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_difference(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);
template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator set_difference(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);
template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator set_symmetric_difference(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);
template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator set_symmetric_difference(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);
// heap operations:
template<class RandomAccessIterator>
void push_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void push_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);
template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);
template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);
template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);
template<class RandomAccessIterator>
bool is_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
bool is_heap(RandomAccessIterator first, RandomAccessIterator last, Compare comp);
template<class RandomAccessIterator>
RandomAccessIterator is_heap_until(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
RandomAccessIterator is_heap_until(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);
// minimum and maximum:
template<class T> const T& min(const T& a, const T& b);
template<class T, class Compare>
const T& min(const T& a, const T& b, Compare comp);
template<class T>
T min(initializer_list<T> t);
template<class T, class Compare>
T min(initializer_list<T> t, Compare comp);
template<class T> const T& max(const T& a, const T& b);
template<class T, class Compare>
const T& max(const T& a, const T& b, Compare comp);
template<class T>
T max(initializer_list<T> t);
template<class T, class Compare>
T max(initializer_list<T> t, Compare comp);
template<class T> pair<const T&, const T&> minmax(const T& a, const T& b);
template<class T, class Compare>
pair<const T&, const T&> minmax(const T& a, const T& b, Compare comp);
template<class T>
pair<T, T> minmax(initializer_list<T> t);
template<class T, class Compare>
pair<T, T> minmax(initializer_list<T> t, Compare comp);
template<class ForwardIterator>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last,
Compare comp);
template<class ForwardIterator>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last,
Compare comp);
template<class ForwardIterator>
pair<ForwardIterator, ForwardIterator>
minmax_element(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
pair<ForwardIterator, ForwardIterator>
minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);
template<class InputIterator1, class InputIterator2>
bool lexicographical_compare(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>
bool lexicographical_compare(
InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp);
// permutations:
template<class BidirectionalIterator>
bool next_permutation(BidirectionalIterator first,
BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first,
BidirectionalIterator last, Compare comp);
template<class BidirectionalIterator>
bool prev_permutation(BidirectionalIterator first,
BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first,
BidirectionalIterator last, Compare comp);
}
Please login to continue.