operators

template< class T >
complex<T> operator+( const complex<T>& lhs, const complex<T>& rhs);
(1)
template< class T >
complex<T> operator+( const complex<T>& lhs, const T& rhs);
(2)
template< class T >
complex<T> operator+( const T& lhs, const complex<T>& rhs);
(3)
template< class T >
complex<T> operator-( const complex<T>& lhs, const complex<T>& rhs);
(4)
template< class T >
complex<T> operator-( const complex<T>& lhs, const T& rhs);
(5)
template< class T >
complex<T> operator-( const T& lhs, const complex<T>& rhs);
(6)
template< class T >
complex<T> operator*( const complex<T>& lhs, const complex<T>& rhs);
(7)
template< class T >
complex<T> operator*( const complex<T>& lhs, const T& rhs);
(8)
template< class T >
complex<T> operator*( const T& lhs, const complex<T>& rhs);
(9)
template< class T >
complex<T> operator/( const complex<T>& lhs, const complex<T>& rhs);
(10)
template< class T >
complex<T> operator/( const complex<T>& lhs, const T& rhs);
(11)
template< class T >
complex<T> operator/( const T& lhs, const complex<T>& rhs);
(12)

Implements the binary operators for complex arithmetic and for mixed complex/scalar arithmetic. Scalar arguments are treated as complex numbers with the real part equal to the argument and the imaginary part set to zero.

1-3) Returns the sum of its arguments
4-6) Returns the result of subtracting rhs from lhs
7-9) Multiplies its arguments
10-12) Divides lhs by rhs

Parameters

lhs, rhs - the arguments: either both complex numbers or one complex and one scalar of matching type (float, double, long double)

Return value

1-3) complex<T>(lhs) += rhs
4-6) complex<T>(lhs) -= rhs
7-9) complex<T>(lhs) *= rhs
10-12) complex<T>(lhs) /= rhs

Notes

Because template argument deduction does not consider implicit conversions, these operators cannot be used for mixed integer/complex arithmetic. In all cases, the scalar must have the same type as the underlying type of the complex number.

Example

#include <iostream>
#include <complex>
int main()
{
    std::complex<double> c2(2, 0);
    std::complex<double> ci(0, 1);
 
    std::cout << ci << " + " << c2 << " = " << ci+c2 << '\n'
              << ci << " * " << ci << " = " << ci*ci << '\n'
              << ci << " + " << c2 << " / " << ci << " = " << ci+c2/ci << '\n'
              << 1  << " / " << ci << " = " << 1./ci << '\n';
 
//    std::cout << 1.f/ci; // compile error
//    std::cout << 1/ci; // compile error
}

Output:

(0,1) + (2,0) = (2,1)
(0,1) * (0,1) = (-1,0)
(0,1) + (2,0) / (0,1) = (0,-1)
1 / (0,1) = (0,-1)

See also

compound assignment of two complex numbers or a complex and a scalar
(public member function)
applies unary operators to complex numbers
(function template)
doc_CPP
2016-10-11 09:59:28
Comments
Leave a Comment

Please login to continue.