This header is part of the pseudo-random number generation library.
Classes
Random number engines | |
| (C++11) | implements linear congruential algorithm (class template) |
| (C++11) | implements Mersenne twister algorithm (class template) |
| (C++11) | implements subtract with carry (a lagged Fibonacci) algorithm (class template) |
Random number engine adaptors | |
| (C++11) | discards some output of a random number engine (class template) |
| (C++11) | packs the output of a random number engine into blocks of specified number of bits (class template) |
| (C++11) | delivers the output of a random number engine in different order (class template) |
Predefined generators | |
| (C++11) | general-purpose bias-eliminating scrambled seed sequence generator (class) |
minstd_rand0 | std::linear_congruential_engine<std::uint_fast32_t, 16807, 0, 2147483647>Discovered in 1969 by Lewis, Goodman and Miller, adopted as "Minimal standard" in 1988 by Park and Miller. |
minstd_rand | std::linear_congruential_engine<std::uint_fast32_t, 48271, 0, 2147483647>Newer "Minimum standard", recommended by Park, Miller, and Stockmeyer in 1993. |
mt19937 |
|
mt19937_64 |
|
ranlux24_base | std::subtract_with_carry_engine<std::uint_fast32_t, 24, 10, 24> |
ranlux48_base | std::subtract_with_carry_engine<std::uint_fast64_t, 48, 5, 12> |
ranlux24 | std::discard_block_engine<std::ranlux24_base, 223, 23>24-bit RANLUX generator by Martin Lüscher and Fred James, 1994. |
ranlux48 | std::discard_block_engine<std::ranlux48_base, 389, 11>48-bit RANLUX generator by Martin Lüscher and Fred James, 1994. |
knuth_b | std::shuffle_order_engine<std::minstd_rand0, 256> |
default_random_engine | implementation-defined |
Uniform distributions | |
| (C++11) | produces integer values evenly distributed across a range (class template) |
| (C++11) | produces real values evenly distributed across a range (class template) |
Bernoulli distributions | |
| (C++11) | produces bool values on a Bernoulli distribution. (class) |
| (C++11) | produces integer values on a binomial distribution. (class template) |
| (C++11) | produces integer values on a negative binomial distribution. (class template) |
| (C++11) | produces integer values on a geometric distribution. (class template) |
Poisson distributions | |
| (C++11) | produces integer values on a poisson distribution. (class template) |
| (C++11) | produces real values on an exponential distribution. (class template) |
| (C++11) | produces real values on an gamma distribution. (class template) |
| (C++11) | produces real values on a Weibull distribution. (class template) |
| (C++11) | produces real values on an extreme value distribution. (class template) |
Normal distributions | |
| (C++11) | produces real values on a standard normal (Gaussian) distribution. (class template) |
| (C++11) | produces real values on a lognormal distribution. (class template) |
| (C++11) | produces real values on a chi-squared distribution. (class template) |
| (C++11) | produces real values on a Cauchy distribution. (class template) |
| (C++11) | produces real values on a Fisher's F-distribution. (class template) |
| (C++11) | produces real values on a Student's t-distribution. (class template) |
Sampling distributions | |
| (C++11) | produces random integers on a discrete distribution. (class template) |
| (C++11) | produces real values distributed on constant subintervals. (class template) |
| (C++11) | produces real values distributed on defined subintervals. (class template) |
Functions
| (C++11) | evenly distributes real values of given precision across [0, 1) (function template) |
Synopsis
#include <initializer_list>
namespace std {
// class template linear_congruential_engine
template<class UIntType, UIntType a, UIntType c, UIntType m>
class linear_congruential_engine;
// class template mersenne_twister_engine
template<class UIntType, size_t w, size_t n, size_t m, size_t r,
UIntType a, size_t u, UintType d, size_t s,
UIntType b, size_t t,
UIntType c, size_t l, UintType f>
class mersenne_twister_engine;
// class template subtract_with_carry_engine
template<class UIntType, size_t w, size_t s, size_t r>
class subtract_with_carry_engine;
// class template discard_block_engine
template<class Engine, size_t p, size_t r>
class discard_block_engine;
// class template independent_bits_engine
template<class Engine, size_t w, class UIntType>
class independent_bits_engine;
// class template shuffle_order_engine
template<class Engine, size_t k>
class shuffle_order_engine;
// engines and engine adaptors with predefined parameters
typedef linear_congruential_engine<uint_fast32_t, 16807, 0, 2147483647>
minstd_rand0;
typedef linear_congruential_engine<uint_fast32_t, 48271, 0, 2147483647>
minstd_rand;
typedef mersenne_twister_engine<uint_fast32_t,
32,624,397,31,0x9908b0df,11,0xffffffff,7,0x9d2c5680,15,
0xefc60000,18,1812433253>
mt19937;
typedef mersenne_twister_engine<uint_fast64_t,
64,312,156,31,0xb5026f5aa96619e9,29,
0x5555555555555555,17,
0x71d67fffeda60000,37,
0xfff7eee000000000,43,
6364136223846793005>
mt19937_64;
typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>
ranlux24_base;
typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>
ranlux48_base;
typedef discard_block_engine<ranlux24_base, 223, 23>
ranlux24;
typedef discard_block_engine<ranlux48_base, 389, 11>
ranlux48;
typedef shuffle_order_engine<minstd_rand0,256>
knuth_b;
typedef /*implementation-defined*/ default_random_engine;
// class random_device
class random_device;
// class seed_seq
class seed_seq;
// function template generate_canonical
template<class RealType, size_t bits, class URNG>
RealType generate_canonical(URNG& g);
// class template uniform_int_distribution
template<class IntType = int>
class uniform_int_distribution;
// class template uniform_real_distribution
template<class RealType = double>
class uniform_real_distribution;
// class bernoulli_distribution
class bernoulli_distribution;
// class template binomial_distribution
template<class IntType = int>
class binomial_distribution;
// class template geometric_distribution
template<class IntType = int>
class geometric_distribution;
// class template negative_binomial_distribution
template<class IntType = int>
class negative_binomial_distribution;
// class template poisson_distribution
template<class IntType = int>
class poisson_distribution;
// class template exponential_distribution
template<class RealType = double>
class exponential_distribution;
// class template gamma_distribution
template<class RealType = double>
class gamma_distribution;
// class template weibull_distribution
template<class RealType = double>
class weibull_distribution;
// class template extreme_value_distribution
template<class RealType = double>
class extreme_value_distribution;
// class template normal_distribution
template<class RealType = double>
class normal_distribution;
// class template lognormal_distribution
template<class RealType = double>
class lognormal_distribution;
// class template chi_squared_distribution
template<class RealType = double>
class chi_squared_distribution;
// class template cauchy_distribution
template<class RealType = double>
class cauchy_distribution;
// class template fisher_f_distribution
template<class RealType = double>
class fisher_f_distribution;
// class template student_t_distribution
template<class RealType = double>
class student_t_distribution;
// class template discrete_distribution
template<class IntType = int>
class discrete_distribution;
// class template piecewise_constant_distribution
template<class RealType = double>
class piecewise_constant_distribution;
// class template piecewise_linear_distribution
template<class RealType = double>
class piecewise_linear_distribution;
} // namespace std Class std::linear_congruential_engine
template<class UIntType, UIntType a, UIntType c, UIntType m>
class linear_congruential_engine
{
public:
// types
typedef UIntType result_type;
// engine characteristics
static constexpr result_type multiplier = a;
static constexpr result_type increment = c;
static constexpr result_type modulus = m;
static constexpr result_type min() { return c == 0u ? 1u: 0u };
static constexpr result_type max() { return m - 1u };
static constexpr result_type default_seed = 1u;
// constructors and seeding functions
explicit linear_congruential_engine(result_type s = default_seed);
template<class Sseq> explicit linear_congruential_engine(Sseq& q);
void seed(result_type s = default_seed);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
}; Class std::mersenne_twister_engine
template<class UIntType, size_t w, size_t n, size_t m, size_t r,
UIntType a, size_t u, UIntType d, size_t s,
UIntType b, size_t t,
UIntType c, size_t l, UIntType f>
class mersenne_twister_engine
{
public:
// types
typedef UIntType result_type;
// engine characteristics
static constexpr size_t word_size = w;
static constexpr size_t state_size = n;
static constexpr size_t shift_size = m;
static constexpr size_t mask_bits = r;
static constexpr UIntType xor_mask = a;
static constexpr size_t tempering_u = u;
static constexpr UIntType tempering_d = d;
static constexpr size_t tempering_s = s;
static constexpr UIntType tempering_b = b;
static constexpr size_t tempering_t = t;
static constexpr UIntType tempering_c = c;
static constexpr size_t tempering_l = l;
static constexpr UIntType initialization_multiplier = f;
static constexpr result_type min () { return 0; }
static constexpr result_type max() { return 2w − 1; }
static constexpr result_type default_seed = 5489u;
// constructors and seeding functions
explicit mersenne_twister_engine(result_type value = default_seed);
template<class Sseq> explicit mersenne_twister_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
}; Class std::subtract_with_carry_engine
template<class UIntType, size_t w, size_t s, size_t r>
class subtract_with_carry_engine
{
public:
// types
typedef UIntType result_type;
// engine characteristics
static constexpr size_t word_size = w;
static constexpr size_t short_lag = s;
static constexpr size_t long_lag = r;
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return m − 1; }
static constexpr result_type default_seed = 19780503u;
// constructors and seeding functions
explicit subtract_with_carry_engine(result_type value = default_seed);
template<class Sseq> explicit subtract_with_carry_engine(Sseq& q);
void seed(result_type value = default_seed);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
}; Class std::discard_block_engine
template<class Engine, size_t p, size_t r>
class discard_block_engine
{
public:
// types
typedef typename Engine::result_type result_type;
// engine characteristics
static constexpr size_t block_size = p;
static constexpr size_t used_block = r;
static constexpr result_type min() { return Engine::min(); }
static constexpr result_type max() { return Engine::max(); }
// constructors and seeding functions
discard_block_engine();
explicit discard_block_engine(const Engine& e);
explicit discard_block_engine(Engine&& e);
explicit discard_block_engine(result_type s);
template<class Sseq> explicit discard_block_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
// property functions
const Engine& base() const noexcept { return e; };
private:
Engine e; // exposition only
int n; // exposition only
}; Class std::independent_bits_engine
template<class Engine, size_t w, class UIntType>
class independent_bits_engine
{
public:
// types
typedef UIntType result_type;
// engine characteristics
static constexpr result_type min() { return 0; }
static constexpr result_type max() { return 2w - 1; }
// constructors and seeding functions
independent_bits_engine();
explicit independent_bits_engine(const Engine& e);
explicit independent_bits_engine(Engine&& e);
explicit independent_bits_engine(result_type s);
template<class Sseq> explicit independent_bits_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
// property functions
const Engine& base() const noexcept { return e; };
private:
Engine e; // exposition only
}; Class std::shuffle_order_engine
template<class Engine, size_t k>
class shuffle_order_engine
{
public:
// types
typedef typename Engine::result_type result_type;
// engine characteristics
static constexpr size_t table_size = k;
static constexpr result_type min() { return Engine::min(); }
static constexpr result_type max() { return Engine::max(); }
// constructors and seeding functions
shuffle_order_engine();
explicit shuffle_order_engine(const Engine& e);
explicit shuffle_order_engine(Engine&& e);
explicit shuffle_order_engine(result_type s);
template<class Sseq> explicit shuffle_order_engine(Sseq& q);
void seed();
void seed(result_type s);
template<class Sseq> void seed(Sseq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
// property functions
const Engine& base() const noexcept { return e; };
private:
Engine e; // exposition only
result_type Y; // exposition only
result_type V[k]; // exposition only
}; Class std::random_device
class random_device
{
public:
// types
typedef unsigned int result_type;
// generator characteristics
static constexpr result_type min() { return numeric_limits<result_type>::min(); }
static constexpr result_type max() { return numeric_limits<result_type>::max(); }
// constructors
explicit random_device(const string& token = implementation-defined);
// generating functions
result_type operator()();
// property functions
double entropy() const noexcept;
// no copy functions
random_device(const random_device& ) = delete;
void operator=(const random_device& ) = delete;
}; Class std::seed_seq
class seed_seq
{
public:
// types
typedef uint_least32_t result_type;
// constructors
seed_seq();
template<class T>
seed_seq(initializer_list<T> il);
template<class InputIterator>
seed_seq(InputIterator begin, InputIterator end);
// generating functions
template<class RandomAccessIterator>
void generate(RandomAccessIterator begin, RandomAccessIterator end);
// property functions
size_t size() const;
template<class OutputIterator>
void param(OutputIterator dest) const;
// no copy functions
seed_seq(const seed_seq& ) = delete;
void operator=(const seed_seq& ) = delete;
private:
vector<result_type> v; // exposition only
}; Class std::uniform_int_distribution
template<class IntType = int>
class uniform_int_distribution
{
public:
// types
typedef IntType result_type;
typedef /*unspecified*/ param_type;
// constructors and reset functions
explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits<IntType>::max());
explicit uniform_int_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
result_type a() const;
result_type b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::bernoulli_distribution
class bernoulli_distribution
{
public:
// types
typedef bool result_type;
typedef /*unspecified*/ param_type;
// constructors and reset functions
explicit bernoulli_distribution(double p = 0.5);
explicit bernoulli_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::binomial_distribution
template<class IntType = int>
class binomial_distribution
{
public:
// types
typedef IntType result_type;
typedef /*unspecified*/ param_type;
// constructors and reset functions
explicit binomial_distribution(IntType t = 1, double p = 0.5);
explicit binomial_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
IntType t() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::geometric_distribution
template<class IntType = int>
class geometric_distribution
{
public:
// types
typedef IntType result_type;
typedef /*unspecified*/ param_type;
// constructors and reset functions
explicit geometric_distribution(double p = 0.5);
explicit geometric_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::negative_binomial_distribution
template<class IntType = int>
class negative_binomial_distribution
{
public:
// types
typedef IntType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);
explicit negative_binomial_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
IntType k() const;
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::poisson_distribution
template<class IntType = int>
class poisson_distribution
{
public:
// types
typedef IntType result_type;
typedef /*unspecified*/ param_type;
// constructors and reset functions
explicit poisson_distribution(double mean = 1.0);
explicit poisson_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
double mean() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::seed_seq
template<class RealType = double>
class exponential_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructors and reset functions
explicit exponential_distribution(RealType lambda = 1.0);
explicit exponential_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
RealType lambda() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::gamma_distribution
template<class RealType = double>
class gamma_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructors and reset functions
explicit gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0);
explicit gamma_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
RealType alpha() const;
RealType beta() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::weibull_distribution
template<class RealType = double>
class weibull_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0)
explicit weibull_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::extreme_value_distribution
template<class RealType = double>
class extreme_value_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0);
explicit extreme_value_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::normal_distribution
template<class RealType = double>
class normal_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructors and reset functions
explicit normal_distribution(RealType mean = 0.0, RealType stddev = 1.0);
explicit normal_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
RealType mean() const;
RealType stddev() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::lognormal_distribution
template<class RealType = double>
class lognormal_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
explicit lognormal_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
RealType m() const;
RealType s() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::chi_squared_distribution
template<class RealType = double>
class chi_squared_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
explicit chi_squared_distribution(RealType n = 1);
explicit chi_squared_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::cauchy_distribution
template<class RealType = double>
class cauchy_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
explicit cauchy_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::fisher_f_distribution
template<class RealType = double>
class fisher_f_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
explicit fisher_f_distribution(RealType m = 1, RealType n = 1);
explicit fisher_f_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
RealType m() const;
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::student_t_distribution
template<class RealType = double>
class student_t_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
explicit student_t_distribution(RealType n = 1);
explicit student_t_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::discrete_distribution
template<class IntType = int>
class discrete_distribution
{
public:
// types
typedef IntType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
discrete_distribution();
template<class InputIterator>
discrete_distribution(InputIterator firstW, InputIterator lastW);
discrete_distribution(initializer_list<double> wl);
template<class UnaryOperation>
discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
explicit discrete_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
vector<double> probabilities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::piecewise_constant_distribution
template<class RealType = double>
class piecewise_constant_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
piecewise_constant_distribution();
template<class InputIteratorB, class InputIteratorW>
piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);
template<class UnaryOperation>
piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);
template<class UnaryOperation>
piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
explicit piecewise_constant_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
vector<result_type> intervals() const;
vector<result_type> densities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
}; Class std::piecewise_linear_distribution
template<class RealType = double>
class piecewise_linear_distribution
{
public:
// types
typedef RealType result_type;
typedef /*unspecified*/ param_type;
// constructor and reset functions
piecewise_linear_distribution();
template<class InputIteratorB, class InputIteratorW>
piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB,
InputIteratorW firstW);
template<class UnaryOperation>
piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);
template<class UnaryOperation>
piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
explicit piecewise_linear_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& g);
template<class URNG>
result_type operator()(URNG& g, const param_type& parm);
// property functions
vector<result_type> intervals() const;
vector<result_type> densities() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Please login to continue.