Defined in header <complex> | ||
---|---|---|
template< class T > complex<T> acosh( const complex<T>& z ); | (since C++11) |
Computes complex arc hyperbolic sine of a complex value z
with branch cut at values less than 1 along the real axis.
Parameters
z | - | complex value |
Return value
If no errors occur, the complex arc hyperbolic cosine of z
is returned, in the range of a half-strip of nonnegative values along the real axis and in the interval [−iπ; +iπ] along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling
.
If the implementation supports IEEE floating-point arithmetic,
-
std::acosh(std::conj(z)) == std::conj(std::acosh(z))
- If
z
is(±0,+0)
, the result is(+0,π/2)
- If
z
is(x,+∞)
(for any finite x), the result is(+∞,π/2)
- If
z
is(x,NaN)
(for any[1] finite x), the result is(NaN,NaN)
andFE_INVALID
may be raised. - If
z
is(-∞,y)
(for any positive finite y), the result is(+∞,π)
- If
z
is(+∞,y)
(for any positive finite y), the result is(+∞,+0)
- If
z
is(-∞,+∞)
, the result is(+∞,3π/4)
- If
z
is(±∞,NaN)
, the result is(+∞,NaN)
- If
z
is(NaN,y)
(for any finite y), the result is(NaN,NaN)
andFE_INVALID
may be raised. - If
z
is(NaN,+∞)
, the result is(+∞,NaN)
- If
z
is(NaN,NaN)
, the result is(NaN,NaN)
- per C11 DR471, this holds for non-zero x only. If
z
is(0,NaN)
, the result should be(NaN,π/2)
Notes
Although the C++ standard names this function "complex arc hyperbolic cosine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic cosine", and, less common, "complex area hyperbolic cosine".
Inverse hyperbolic cosine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segment (-∞,+1) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic sine is acosh z = ln(z + √z+1 √z-1) For any z, acosh(z) =
√z-1 |
√1-z |
acos(z), or simply i acos(z) in the upper half of the complex plane.
Example
#include <iostream> #include <complex> int main() { std::cout << std::fixed; std::complex<double> z1(0.5, 0); std::cout << "acosh" << z1 << " = " << std::acosh(z1) << '\n'; std::complex<double> z2(0.5, -0.0); std::cout << "acosh" << z2 << " (the other side of the cut) = " << std::acosh(z2) << '\n'; // in upper half-plane, acosh = i acos std::complex<double> z3(1, 1), i(0, 1); std::cout << "acosh" << z3 << " = " << std::acosh(z3) << '\n' << "i*acos" << z3 << " = " << i*std::acos(z3) << '\n'; }
Output:
acosh(0.500000,0.000000) = (0.000000,-1.047198) acosh(0.500000,-0.000000) (the other side of the cut) = (0.000000,1.047198) acosh(1.000000,1.000000) = (1.061275,0.904557) i*acos(1.000000,1.000000) = (1.061275,0.904557)
See also
(C++11) | computes arc cosine of a complex number (arccos(z)) (function template) |
(C++11) | computes area hyperbolic sine of a complex number (function template) |
(C++11) | computes area hyperbolic tangent of a complex number (function template) |
computes hyperbolic cosine of a complex number (ch(z)) (function template) | |
(C++11) | computes the inverse hyperbolic cosine (arcosh(x)) (function) |
C documentation for cacosh |
Please login to continue.