|   Defined in header   <complex>  |  ||
|---|---|---|
 template< class T > complex<T> asinh( const complex<T>& z );  |  (since C++11) | 
Computes complex arc hyperbolic sine of a complex value z with branch cuts outside the interval [−i; +i] along the imaginary axis.
Parameters
| z | - | complex value | 
Return value
If no errors occur, the complex arc hyperbolic sine of z is returned, in the range of a strip mathematically unbounded along the real axis and in the interval [−iπ/2; +iπ/2] along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
-  
std::asinh(std::conj(z)) == std::conj(std::asinh(z)) -  
std::asinh(-z) == -std::asinh(z) -  If 
zis(+0,+0), the result is(+0,+0) -  If 
zis(x,+∞)(for any positive finite x), the result is(+∞,π/2) -  If 
zis(x,NaN)(for any finite x), the result is(NaN,NaN)andFE_INVALIDmay be raised -  If 
zis(+∞,y)(for any positive finite y), the result is(+∞,+0) -  If 
zis(+∞,+∞), the result is(+∞,π/4) -  If 
zis(+∞,NaN), the result is(+∞,NaN) -  If 
zis(NaN,+0), the result is(NaN,+0) -  If 
zis(NaN,y)(for any finite nonzero y), the result is(NaN,NaN)andFE_INVALIDmay be raised -  If 
zis(NaN,+∞), the result is(±∞,NaN)(the sign of the real part is unspecified) -  If 
zis(NaN,NaN), the result is(NaN,NaN) 
Notes
Although the C++ standard names this function "complex arc hyperbolic sine", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic sine", and, less common, "complex area hyperbolic sine".
Inverse hyperbolic sine is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-i∞,-i) and (i,i∞) of the imaginary axis.
The mathematical definition of the principal value of the inverse hyperbolic sine is asinh z = ln(z + √1+z2
)  For any z, asinh(z) =
| asin(iz) | 
| i | 
Example
#include <iostream>
#include <complex>
 
int main()
{
    std::cout << std::fixed;
    std::complex<double> z1(0, -2);
    std::cout << "asinh" << z1 << " = " << std::asinh(z1) << '\n';
 
    std::complex<double> z2(-0.0, -2);
    std::cout << "asinh" << z2 << " (the other side of the cut) = "
              << std::asinh(z2) << '\n';
 
    // for any z, asinh(z) = asin(iz)/i
    std::complex<double> z3(1,2);
    std::complex<double> i(0,1);
    std::cout << "asinh" << z3 << " = " << std::asinh(z3) << '\n'
              << "asin" << z3*i << "/i = " << std::asin(z3*i)/i << '\n';
}Output:
asinh(0.000000,-2.000000) = (1.316958,-1.570796) asinh(-0.000000,-2.000000) (the other side of the cut) = (-1.316958,-1.570796) asinh(1.000000,2.000000) = (1.469352,1.063440) asin(-2.000000,1.000000)/i = (1.469352,1.063440)
See also
|   (C++11)   |   computes area hyperbolic cosine of a complex number  (function template)  |  
|   (C++11)   |   computes area hyperbolic tangent of a complex number  (function template)  |  
|  computes hyperbolic sine of a complex number (sh(z))  (function template)  |  |
|   (C++11)   |   computes the inverse hyperbolic sine (arsinh(x))  (function)  |  
  C documentation for casinh   |  |
Please login to continue.