Defined in header <cmath> | ||||
---|---|---|---|---|
| (1) | (since C++11) | ||
| (2) | (since C++11) | ||
| (3) | (since C++11) | ||
| (4) | (since C++11) |
x
and y
, without undue overflow or underflow at intermediate stages of the computation.double
. If any other argument is long double
, then the return type is long double
, otherwise it is double
.The value computed by this function is the length of the hypotenuse of a right-angled triangle with sides of length x
and y
, or the distance of the point (x,y)
from the origin (0,0)
, or the magnitude of a complex number x+iy
.
Parameters
x, y | - | values of floating-point or integral types |
Return value
If no errors occur, the hypotenuse of a right-angled triangle, √x2
+y2
, is returned.
If a range error due to overflow occurs, +HUGE_VAL
, +HUGE_VALF
, or +HUGE_VALL
is returned.
If a range error due to underflow occurs, the correct result (after rounding) is returned.
Error handling
Errors are reported as specified in math_errhandling
.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
-
hypot(x, y)
,hypot(y, x)
, andhypot(x, -y)
are equivalent - if one of the arguments is ±0,
hypot
is equivalent tofabs
called with the non-zero argument - if one of the arguments is ±∞,
hypot
returns +∞ even if the other argument is NaN - otherwise, if any of the arguments is NaN, NaN is returned
Notes
Implementations usually guarantee precision of less than 1 ulp (units in the last place): GNU, BSD, Open64.
std::hypot(x, y)
is equivalent to std::abs(std::complex<double>(x,y))
.
POSIX specifies that underflow may only occur when both arguments are subnormal and the correct result is also subnormal (this forbids naive implementations).
Example
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | #include <iostream> #include <cmath> #include <cerrno> #include <cfenv> #include <cfloat> #include <cstring> #pragma STDC FENV_ACCESS ON int main() { // typical usage std::cout << "(1,1) cartesian is (" << std::hypot(1,1) << ',' << std:: atan2 (1,1) << ") polar\n" ; // special values std::cout << "hypot(NAN,INFINITY) = " << std::hypot(NAN,INFINITY) << '\n' ; // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "hypot(DBL_MAX,DBL_MAX) = " << std::hypot(DBL_MAX,DBL_MAX) << '\n' ; if ( errno == ERANGE) std::cout << " errno = ERANGE " << std:: strerror ( errno ) << '\n' ; if (fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n" ; } |
Output:
1 2 3 4 5 | (1,1) cartesian is (1.41421,0.785398) polar hypot(NAN,INFINITY) = inf hypot(DBL_MAX,DBL_MAX) = inf errno = ERANGE Numerical result out of range FE_OVERFLOW raised |
See also
raises a number to the given power (xy) (function) | |
computes square root (√x) (function) | |
(C++11) | computes cubic root (3√x) (function) |
returns the magnitude of a complex number (function template) | |
C documentation for hypot |
Please login to continue.