| Defined in header <algorithm> | ||
|---|---|---|
template< class ForwardIt1, class ForwardIt2 >
bool is_permutation( ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2 ); | (1) | (since C++11) |
template< class ForwardIt1, class ForwardIt2, class BinaryPredicate >
bool is_permutation( ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, BinaryPredicate p ); | (2) | (since C++11) |
template< class ForwardIt1, class ForwardIt2 >
bool is_permutation( ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2 ); | (3) | (since C++14) |
template< class ForwardIt1, class ForwardIt2, class BinaryPredicate >
bool is_permutation( ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
BinaryPredicate p ); | (4) | (since C++14) |
Returns true if there exists a permutation of the elements in the range [first1, last1) that makes that range equal to the range [first2,last2), where last2 denotes first2 + (last1 - first1) if it was not given.
The overloads (1) and (3) use operator== for equality, whereas the overloads (2) and (4) use the binary predicate p.
Parameters
| first1, last1 | - | the range of elements to compare |
| first2, last2 | - | the second range to compare |
| p | - | binary predicate which returns true if the elements should be treated as equal. The signature of the predicate function should be equivalent to the following:
|
| Type requirements | ||
- ForwardIt1, ForwardIt2 must meet the requirements of ForwardIterator. | ||
- ForwardIt1, ForwardIt2 must have the same value type. | ||
Return value
true if the range [first1, last1) is a permutation of the range [first2, last2).
Complexity
At most O(N2) applications of the predicate, or exactly N if the sequences are already equal, where N=std::distance(first1, last1).
However if ForwardIt1 and ForwardIt2 meet the requirements of RandomAccessIterator and std::distance(first1, last1) != std::distance(first2, last2) no applications of the predicate are made.
Possible implementation
template<class ForwardIt1, class ForwardIt2>
bool is_permutation(ForwardIt1 first, ForwardIt1 last,
ForwardIt2 d_first)
{
// skip common prefix
std::tie(first, d_first) = std::mismatch(first, last, d_first);
// iterate over the rest, counting how many times each element
// from [first, last) appears in [d_first, d_last)
if (first != last) {
ForwardIt2 d_last = d_first;
std::advance(d_last, std::distance(first, last));
for (ForwardIt1 i = first; i != last; ++i) {
if (i != std::find(first, i, *i)) continue; // already counted this *i
auto m = std::count(d_first, d_last, *i);
if (m==0 || std::count(i, last, *i) != m) {
return false;
}
}
}
return true;
} |
Example
#include <algorithm>
#include <vector>
#include <iostream>
int main()
{
std::vector<int> v1{1,2,3,4,5};
std::vector<int> v2{3,5,4,1,2};
std::cout << "3,5,4,1,2 is a permutation of 1,2,3,4,5? "
<< std::boolalpha
<< std::is_permutation(v1.begin(), v1.end(), v2.begin()) << '\n';
std::vector<int> v3{3,5,4,1,1};
std::cout << "3,5,4,1,1 is a permutation of 1,2,3,4,5? "
<< std::boolalpha
<< std::is_permutation(v1.begin(), v1.end(), v3.begin()) << '\n';
}Output:
3,5,4,1,2 is a permutation of 1,2,3,4,5? true 3,5,4,1,1 is a permutation of 1,2,3,4,5? false
See also
| generates the next greater lexicographic permutation of a range of elements (function template) | |
| generates the next smaller lexicographic permutation of a range of elements (function template) |
Please login to continue.