Defined in header <random> | ||
---|---|---|
template< class RealType = double > class lognormal_distribution; | (since C++11) |
The lognormal_distribution random number distribution produces random numbers x > 0 according to a log-normal distribution: f(x; m,s) =
1 |
sx√2 π |
exp⎛
⎜
⎝-
(ln x - m)2 |
2s2 |
⎞
⎟
⎠
The parameter m is the mean and the parameter s the standard deviation.
std::lognormal_distribution
satisfies all requirements of RandomNumberDistribution
.
Template parameters
RealType | - | The result type generated by the generator. The effect is undefined if this is not one of float , double , or long double . |
Member types
Member type | Definition |
---|---|
result_type | RealType |
param_type | the type of the parameter set, see RandomNumberDistribution . |
Member functions
constructs new distribution (public member function) | |
resets the internal state of the distribution (public member function) | |
Generation | |
operator()
| generates the next random number in the distribution (public member function) |
Characteristics | |
returns the distribution parameters (public member function) | |
gets or sets the distribution parameter object (public member function) | |
returns the minimum potentially generated value (public member function) | |
returns the maximum potentially generated value (public member function) |
Non-member functions
compares two distribution objects (function) | |
performs stream input and output on pseudo-random number distribution (function template) |
Example
#include <iostream> #include <iomanip> #include <string> #include <map> #include <random> #include <cmath> int main() { std::random_device rd; std::mt19937 gen(rd()); std::lognormal_distribution<> d(1.6, 0.25); std::map<int, int> hist; for(int n=0; n<10000; ++n) { ++hist[std::round(d(gen))]; } for(auto p : hist) { std::cout << std::fixed << std::setprecision(1) << std::setw(2) << p.first << ' ' << std::string(p.second/200, '*') << '\n'; } }
Output:
2 3 *** 4 ************* 5 *************** 6 ********* 7 **** 8 * 9 10 11 12
External links
- Weisstein, Eric W. "Log Normal Distribution." From MathWorld--A Wolfram Web Resource.
- Log-normal distribution. From Wikipedia.
Please login to continue.