Defined in header <algorithm> | ||
---|---|---|
template< class BidirIt, class UnaryPredicate > BidirIt partition( BidirIt first, BidirIt last, UnaryPredicate p ); | (until C++11) | |
template< class ForwardIt, class UnaryPredicate > ForwardIt partition( ForwardIt first, ForwardIt last, UnaryPredicate p ); | (since C++11) |
Reorders the elements in the range [first, last)
in such a way that all elements for which the predicate p
returns true
precede the elements for which predicate p
returns false
. Relative order of the elements is not preserved.
Parameters
first, last | - | the range of elements to reorder |
p | - | unary predicate which returns true if the element should be ordered before other elements. The signature of the predicate function should be equivalent to the following:
The signature does not need to have |
Type requirements | ||
- BidirIt must meet the requirements of BidirectionalIterator . | ||
- ForwardIt must meet the requirements of ValueSwappable and ForwardIterator . However, the operation is more efficient if ForwardIt also satisfies the requirements of BidirectionalIterator | ||
- UnaryPredicate must meet the requirements of Predicate . |
Return value
Iterator to the first element of the second group.
Complexity
Exactly std::distance(first,last)
applications of the predicate and at most std::distance(first,last)
swaps. If ForwardIt
meets the requirements of BidirectionalIterator
at most std::distance(first,last)/2
swaps are done.
Possible implementation
template<class ForwardIt, class UnaryPredicate> ForwardIt partition(ForwardIt first, ForwardIt last, UnaryPredicate p) { if (first == last) return first; ForwardIt part(first++); if (first == last) return p(*part) ? first : part; while (first != last) { if (p(*part)) ++part; else if (p(*first)) { iter_swap(part, first); ++part; } ++first; } return part; } |
Example
#include <algorithm> #include <iostream> #include <iterator> #include <vector> #include <forward_list> template <class ForwardIt> void quicksort(ForwardIt first, ForwardIt last) { if(first == last) return; auto pivot = *std::next(first, std::distance(first,last)/2); ForwardIt middle1 = std::partition(first, last, [pivot](const auto& em){ return em < pivot; }); ForwardIt middle2 = std::partition(middle1, last, [pivot](const auto& em){ return !(pivot < em); }); quicksort(first, middle1); quicksort(middle2, last); } int main() { std::vector<int> v = {0,1,2,3,4,5,6,7,8,9}; std::cout << "Original vector:\n "; for (int elem : v) std::cout << elem << ' '; auto it = std::partition(v.begin(), v.end(), [](int i){return i % 2 == 0;}); std::cout << "\nPartitioned vector:\n "; std::copy(std::begin(v), it, std::ostream_iterator<int>(std::cout, " ")); std::cout << " * "; std::copy(it, std::end(v), std::ostream_iterator<int>(std::cout, " ")); std::forward_list<int> fl = {1, 30, -4, 3, 5, -4, 1, 6, -8, 2, -5, 64, 1, 92}; std::cout << "\nUnsorted list:\n "; for(int n : fl) std::cout << n << ' '; std::cout << '\n'; quicksort(std::begin(fl), std::end(fl)); std::cout << "Sorted using quicksort:\n "; for(int fi : fl) std::cout << fi << ' '; std::cout << '\n'; }
Output:
Original vector: 0 1 2 3 4 5 6 7 8 9 Partitioned vector: 0 8 2 6 4 * 5 3 7 1 9 Unsorted list: 1 30 -4 3 5 -4 1 6 -8 2 -5 64 1 92 Sorted using quicksort: -8 -5 -4 -4 1 1 1 2 3 5 6 30 64 92
See also
(C++11) | determines if the range is partitioned by the given predicate (function template) |
divides elements into two groups while preserving their relative order (function template) | |
std::experimental::parallel::partition
(parallelism TS) | parallelized version of std::partition (function template) |
Please login to continue.