| Defined in header <complex> | ||
|---|---|---|
template< class T > complex<T> pow( const complex<T>& x, const complex<T>& y); | ||
template< class T > complex<T> pow( const complex<T>& x, const T& y); | ||
template< class T > complex<T> pow( const T& x, const complex<T>& y); | ||
template< class T, class U > complex</*Promoted*/> pow( const complex<T>& x, const complex<U>& y); | (since C++11) | |
template< class T, class U > complex</*Promoted*/> pow( const complex<T>& x, const U& y); | (since C++11) | |
template< class T, class U > complex</*Promoted*/> pow( const T& x, const complex<U>& y); | (since C++11) |
Computes complex x raised to a complex power y with a branch cut along the negative real axis for the first argument.
(since C++11)Additional overloads are provided for all arithmetic types, such that.
- 1. If either argument is
long doubleorstd::complex<long double>, then both arguments are cast tostd::complex<long double> - 2. Otherwise, if either argument is
double,std::complex<double>or integer type, then both arguments are cast tostd::complex<double> - 3. Otherwise, if either argument is
floatorstd::complex<float>, then both arguments are cast tostd::complex<float>
Parameters
| x | - | base as a complex value |
| y | - | exponent as a complex value |
Return value
If no errors occur, the complex power xy
, is returned.
Errors and special cases are handled as if the operation is implemented by std::exp(y*std::log(x)).
The result of std::pow(0, 0) is implementation-defined.
Example
#include <iostream>
#include <complex>
int main()
{
std::cout << std::fixed;
std::complex<double> z(1, 2);
std::cout << "(1,2)^2 = " << std::pow(z, 2) << '\n';
std::complex<double> z2(-1, 0); // square root of -1
std::cout << "-1^0.5 = " << std::pow(z2, 0.5) << '\n';
std::complex<double> z3(-1, -0.0); // other side of the cut
std::cout << "(-1, -0)^0.5 = " << std::pow(z3, 0.5) << '\n';
std::complex<double> i(0, 1); // i^i = exp(-pi/2)
std::cout << "i^i = " << std::pow(i, i) << '\n';
}Output:
(1,2)^2 = (-3.000000,4.000000) -1^0.5 = (0.000000,1.000000) (-1, -0)^0.5 = (0.000000,-1.000000) i^i = (0.207880,0.000000)
See also
| complex square root in the range of the right half-plane (function template) | |
| raises a number to the given power (xy) (function) | |
applies the function std::pow to two valarrays or a valarray and a value (function template) | |
C documentation for cpow | |
Please login to continue.