| Defined in header <type_traits> | ||
|---|---|---|
template< class > class result_of; // undefined template< class F, class... ArgTypes > class result_of<F(ArgTypes...)>; | (since C++11) |
Deduces the return type of a function call expression at compile time.
F must be a callable type, reference to function, or reference to callable type. Invoking F with ArgTypes... must be a well-formed expression | (since C++11) |
F and all types in ArgTypes can be any complete type, array of unknown bound, or (cv-qualified) void | (since C++14) |
Member types
| Member type | Definition |
|---|---|
type | the return type of the Callable type F if invoked with the arguments ArgTypes.... Only defined if F can be called with the arguments ArgTypes... in unevaluated context. (since C++14) |
Helper types
template< class T > using result_of_t = typename result_of<T>::type; | (since C++14) |
Possible implementation
namespace detail {
template <class F, class... Args>
inline auto INVOKE(F&& f, Args&&... args) ->
decltype(forward<F>(f)(forward<Args>(args)...)) {
return forward<F>(f)(forward<Args>(args)...);
}
template <class Base, class T, class Derived>
inline auto INVOKE(T Base::*pmd, Derived&& ref) ->
decltype(forward<Derived>(ref).*pmd) {
return forward<Derived>(ref).*pmd;
}
template <class PMD, class Pointer>
inline auto INVOKE(PMD&& pmd, Pointer&& ptr) ->
decltype((*forward<Pointer>(ptr)).*forward<PMD>(pmd)) {
return (*forward<Pointer>(ptr)).*forward<PMD>(pmd);
}
template <class Base, class T, class Derived, class... Args>
inline auto INVOKE(T Base::*pmf, Derived&& ref, Args&&... args) ->
decltype((forward<Derived>(ref).*pmf)(forward<Args>(args)...)) {
return (forward<Derived>(ref).*pmf)(forward<Args>(args)...);
}
template <class PMF, class Pointer, class... Args>
inline auto INVOKE(PMF&& pmf, Pointer&& ptr, Args&&... args) ->
decltype(((*forward<Pointer>(ptr)).*forward<PMF>(pmf))(forward<Args>(args)...)) {
return ((*forward<Pointer>(ptr)).*forward<PMF>(pmf))(forward<Args>(args)...);
}
} // namespace detail
// Minimal C++11 implementation:
template <class> struct result_of;
template <class F, class... ArgTypes>
struct result_of<F(ArgTypes...)> {
using type = decltype(detail::INVOKE(std::declval<F>(), std::declval<ArgTypes>()...));
};
// Conforming C++14 implementation (is also a valid C++11 implementation):
namespace detail {
template <typename, typename = void>
struct result_of {};
template <typename F, typename...Args>
struct result_of<F(Args...),
decltype(void(detail::INVOKE(std::declval<F>(), std::declval<Args>()...)))> {
using type = decltype(detail::INVOKE(std::declval<F>(), std::declval<Args>()...));
};
} // namespace detail
template <class T> struct result_of : detail::result_of<T> {};Notes
As formulated in C++11, std::result_of would fail to compile when F(ArgTypes...) is ill-formed (e.g. when F is not a callable type at all). C++14 changes that to a SFINAE (when F is not callable, std::result_of<F(Args...)> simply doesn't have the type member).
The motivation behind std::result_of is to determine the result of invoking a FunctionObject, in particular if that result type is different for different sets of arguments.
Examples
#include <type_traits>
#include <iostream>
struct S {
double operator()(char, int&);
float operator()(int) { return 1.0;}
};
template<class T>
typename std::result_of<T(int)>::type f(T& t)
{
std::cout << "overload of f for callable T\n";
return t(0);
}
template<class T, class U>
int f(U u)
{
std::cout << "overload of f for non-callable T\n";
return u;
}
int main()
{
// the result of invoking S with char and int& arguments is double
std::result_of<S(char, int&)>::type d = 3.14; // d has type double
static_assert(std::is_same<decltype(d), double>::value, "");
// the result of invoking S with int argument is float
std::result_of<S(int)>::type x = 3.14; // f has type float
static_assert(std::is_same<decltype(x), float>::value, "");
// result_of can be used with a pointer to member function as follows
struct C { double Func(char, int&); };
std::result_of<decltype(&C::Func)(C, char, int&)>::type g = 3.14;
static_assert(std::is_same<decltype(g), double>::value, "");
f<C>(1); // fails to compile in C++11, calls the non-callable overload in C++14
}Output:
overload of f for non-callable T
See also
| (C++11) | obtains a reference to its argument for use in unevaluated context (function template) |
Please login to continue.