tf.assert_non_negative()

tf.assert_non_negative(x, data=None, summarize=None, message=None, name=None)

Assert the condition x >= 0 holds element-wise.

Example of adding a dependency to an operation:

with tf.control_dependencies([tf.assert_non_negative(x)]):
  output = tf.reduce_sum(x)

Example of adding dependency to the tensor being checked:

x = tf.with_dependencies([tf.assert_non_negative(x)], x)

Non-negative means, for every element x[i] of x, we have x[i] >= 0. If x is empty this is trivially satisfied.

Args:
  • x: Numeric Tensor.
  • data: The tensors to print out if the condition is False. Defaults to error message and first few entries of x.
  • summarize: Print this many entries of each tensor.
  • message: A string to prefix to the default message.
  • name: A name for this operation (optional). Defaults to "assert_non_negative".
Returns:

Op raising InvalidArgumentError unless x is all non-negative.

doc_TensorFlow
2016-10-14 12:42:46
Comments
Leave a Comment

Please login to continue.