tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False, seed=None, dtype=tf.float32)
Returns an initializer that generates tensors without scaling variance.
When initializing a deep network, it is in principle advantageous to keep the scale of the input variance constant, so it does not explode or diminish by reaching the final layer. This initializer use the following formula: if mode='FAN_IN': # Count only number of input connections. n = fan_in elif mode='FAN_OUT': # Count only number of output connections. n = fan_out elif mode='FAN_AVG': # Average number of inputs and output connections. n = (fan_in + fan_out)/2.0
truncated_normal(shape, 0.0, stddev=sqrt(factor / n))
To get http://arxiv.org/pdf/1502.01852v1.pdf use (Default): - factor=2.0 mode='FAN_IN' uniform=False To get http://arxiv.org/abs/1408.5093 use: - factor=1.0 mode='FAN_IN' uniform=True To get http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf use: - factor=1.0 mode='FAN_AVG' uniform=True. To get xavier_initializer use either: - factor=1.0 mode='FAN_AVG' uniform=True. - factor=1.0 mode='FAN_AVG' uniform=False.
Args:
-
factor: Float. A multiplicative factor. -
mode: String. 'FAN_IN', 'FAN_OUT', 'FAN_AVG'. -
uniform: Whether to use uniform or normal distributed random initialization. -
seed: A Python integer. Used to create random seeds. Seeset_random_seedfor behavior. -
dtype: The data type. Only floating point types are supported.
Returns:
An initializer that generates tensors with unit variance.
Raises:
-
ValueError: ifdtypeis not a floating point type. -
TypeError: ifmodeis not in ['FAN_IN', 'FAN_OUT', 'FAN_AVG'].
Please login to continue.