tf.contrib.learn.DNNRegressor

class tf.contrib.learn.DNNRegressor

A regressor for TensorFlow DNN models.

Example:

education = sparse_column_with_hash_bucket(column_name="education",
                                           hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
                                            hash_bucket_size=1000)

education_emb = embedding_column(sparse_id_column=education, dimension=16,
                                 combiner="sum")
occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16,
                                 combiner="sum")

estimator = DNNRegressor(
    feature_columns=[education_emb, occupation_emb],
    hidden_units=[1024, 512, 256])

# Or estimator using the ProximalAdagradOptimizer optimizer with
# regularization.
estimator = DNNRegressor(
    feature_columns=[education_emb, occupation_emb],
    hidden_units=[1024, 512, 256],
    optimizer=tf.train.ProximalAdagradOptimizer(
      learning_rate=0.1,
      l1_regularization_strength=0.001
    ))

# Input builders
def input_fn_train: # returns x, Y
  pass
estimator.fit(input_fn=input_fn_train)

def input_fn_eval: # returns x, Y
  pass
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)

Input of fit and evaluate should have following features, otherwise there will be a KeyError:

  • if weight_column_name is not None, a feature with key=weight_column_name whose value is a Tensor.
  • for each column in feature_columns:
    • if column is a SparseColumn, a feature with key=column.name whose value is a SparseTensor.
    • if column is a WeightedSparseColumn, two features: the first with key the id column name, the second with key the weight column name. Both features' value must be a SparseTensor.
    • if column is a RealValuedColumn, a feature with key=column.name whose value is a Tensor. - - -
doc_TensorFlow
2016-10-14 13:05:35
Comments
Leave a Comment

Please login to continue.