class tf.contrib.learn.DNNRegressor
A regressor for TensorFlow DNN models.
Example:
education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_emb = embedding_column(sparse_id_column=education, dimension=16, combiner="sum") occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16, combiner="sum") estimator = DNNRegressor( feature_columns=[education_emb, occupation_emb], hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNRegressor( feature_columns=[education_emb, occupation_emb], hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) # Input builders def input_fn_train: # returns x, Y pass estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, Y pass estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x)
Input of fit
and evaluate
should have following features, otherwise there will be a KeyError
:
- if
weight_column_name
is notNone
, a feature withkey=weight_column_name
whose value is aTensor
. - for each
column
infeature_columns
:- if
column
is aSparseColumn
, a feature withkey=column.name
whosevalue
is aSparseTensor
. - if
column
is aWeightedSparseColumn
, two features: the first withkey
the id column name, the second withkey
the weight column name. Both features'value
must be aSparseTensor
. - if
column
is aRealValuedColumn
, a feature withkey=column.name
whosevalue
is aTensor
. - - -
- if
Please login to continue.