class tf.contrib.learn.DNNRegressor
A regressor for TensorFlow DNN models.
Example:
education = sparse_column_with_hash_bucket(column_name="education",
                                           hash_bucket_size=1000)
occupation = sparse_column_with_hash_bucket(column_name="occupation",
                                            hash_bucket_size=1000)
education_emb = embedding_column(sparse_id_column=education, dimension=16,
                                 combiner="sum")
occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16,
                                 combiner="sum")
estimator = DNNRegressor(
    feature_columns=[education_emb, occupation_emb],
    hidden_units=[1024, 512, 256])
# Or estimator using the ProximalAdagradOptimizer optimizer with
# regularization.
estimator = DNNRegressor(
    feature_columns=[education_emb, occupation_emb],
    hidden_units=[1024, 512, 256],
    optimizer=tf.train.ProximalAdagradOptimizer(
      learning_rate=0.1,
      l1_regularization_strength=0.001
    ))
# Input builders
def input_fn_train: # returns x, Y
  pass
estimator.fit(input_fn=input_fn_train)
def input_fn_eval: # returns x, Y
  pass
estimator.evaluate(input_fn=input_fn_eval)
estimator.predict(x=x)
Input of fit and evaluate should have following features, otherwise there will be a KeyError:
- if 
weight_column_nameis notNone, a feature withkey=weight_column_namewhose value is aTensor. - for each 
columninfeature_columns:- if 
columnis aSparseColumn, a feature withkey=column.namewhosevalueis aSparseTensor. - if 
columnis aWeightedSparseColumn, two features: the first withkeythe id column name, the second withkeythe weight column name. Both features'valuemust be aSparseTensor. - if 
columnis aRealValuedColumn, a feature withkey=column.namewhosevalueis aTensor. - - - 
 - if 
 
Please login to continue.