class tf.contrib.learn.LinearClassifier
Linear classifier model.
Train a linear model to classify instances into one of multiple possible classes. When number of possible classes is 2, this is binary classification.
Example:
education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_x_occupation = crossed_column(columns=[education, occupation], hash_bucket_size=10000) # Estimator using the default optimizer. estimator = LinearClassifier( feature_columns=[occupation, education_x_occupation]) # Or estimator using the FTRL optimizer with regularization. estimator = LinearClassifier( feature_columns=[occupation, education_x_occupation], optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) # Or estimator using the SDCAOptimizer. estimator = LinearClassifier( feature_columns=[occupation, education_x_occupation], optimizer=tf.contrib.linear_optimizer.SDCAOptimizer( example_id_column='example_id', num_loss_partitions=..., symmetric_l2_regularization=2.0 )) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x)
Input of fit
and evaluate
should have following features, otherwise there will be a KeyError
:
- if
weight_column_name
is notNone
, a feature withkey=weight_column_name
whose value is aTensor
. - for each
column
infeature_columns
:- if
column
is aSparseColumn
, a feature withkey=column.name
whosevalue
is aSparseTensor
. - if
column
is aWeightedSparseColumn
, two features: the first withkey
the id column name, the second withkey
the weight column name. Both features'value
must be aSparseTensor
. - if
column
is aRealValuedColumn
, a feature withkey=column.name
whosevalue
is aTensor
. - - -
- if
Please login to continue.