tf.contrib.learn.monitors.ValidationMonitor.__init__(x=None, y=None, input_fn=None, batch_size=None, eval_steps=None, every_n_steps=100, metrics=None, early_stopping_rounds=None, early_stopping_metric='loss', early_stopping_metric_minimize=True, name=None)
Initializes a ValidationMonitor.
Args:
-
x: SeeBaseEstimator.evaluate. -
y: SeeBaseEstimator.evaluate. -
input_fn: SeeBaseEstimator.evaluate. -
batch_size: SeeBaseEstimator.evaluate. -
eval_steps: SeeBaseEstimator.evaluate. -
every_n_steps: Check for new checkpoints to evaluate every N steps. If a new checkpoint is found, it is evaluated. SeeEveryN. -
metrics: SeeBaseEstimator.evaluate. -
early_stopping_rounds:int. If the metric indicated byearly_stopping_metricdoes not change according toearly_stopping_metric_minimizefor this many steps, then training will be stopped. -
early_stopping_metric:string, name of the metric to check for early stopping. -
early_stopping_metric_minimize:bool, True ifearly_stopping_metricis expected to decrease (thus early stopping occurs when this metric stops decreasing), False ifearly_stopping_metricis expected to increase. Typically,early_stopping_metric_minimizeis True for loss metrics like mean squared error, and False for performance metrics like accuracy. -
name: SeeBaseEstimator.evaluate.
Raises:
-
ValueError: If both x and input_fn are provided.
Please login to continue.