tf.contrib.learn.monitors.ValidationMonitor.__init__(x=None, y=None, input_fn=None, batch_size=None, eval_steps=None, every_n_steps=100, metrics=None, early_stopping_rounds=None, early_stopping_metric='loss', early_stopping_metric_minimize=True, name=None)
Initializes a ValidationMonitor.
Args:
-
x
: SeeBaseEstimator.evaluate
. -
y
: SeeBaseEstimator.evaluate
. -
input_fn
: SeeBaseEstimator.evaluate
. -
batch_size
: SeeBaseEstimator.evaluate
. -
eval_steps
: SeeBaseEstimator.evaluate
. -
every_n_steps
: Check for new checkpoints to evaluate every N steps. If a new checkpoint is found, it is evaluated. SeeEveryN
. -
metrics
: SeeBaseEstimator.evaluate
. -
early_stopping_rounds
:int
. If the metric indicated byearly_stopping_metric
does not change according toearly_stopping_metric_minimize
for this many steps, then training will be stopped. -
early_stopping_metric
:string
, name of the metric to check for early stopping. -
early_stopping_metric_minimize
:bool
, True ifearly_stopping_metric
is expected to decrease (thus early stopping occurs when this metric stops decreasing), False ifearly_stopping_metric
is expected to increase. Typically,early_stopping_metric_minimize
is True for loss metrics like mean squared error, and False for performance metrics like accuracy. -
name
: SeeBaseEstimator.evaluate
.
Raises:
-
ValueError
: If both x and input_fn are provided.
Please login to continue.