tf.contrib.learn.TensorFlowEstimator.__init__(model_fn, n_classes, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, class_weight=None, continue_training=False, config=None, verbose=1)
Initializes a TensorFlowEstimator instance.
Args:
-
model_fn
: Model function, that takes inputx
,y
tensors and outputs prediction and loss tensors. -
n_classes
: Number of classes in the target. -
batch_size
: Mini batch size. -
steps
: Number of steps to run over data. -
optimizer
: Optimizer name (or class), for example "SGD", "Adam", "Adagrad". -
learning_rate
: If this is constant float value, no decay function is used. Instead, a customized decay function can be passed that accepts global_step as parameter and returns a Tensor. e.g. exponential decay function:def exp_decay(global_step): return tf.train.exponential_decay( learning_rate=0.1, global_step, decay_steps=2, decay_rate=0.001)
clip_gradients
: Clip norm of the gradients to this value to stop gradient explosion.class_weight
: None or list of n_classes floats. Weight associated with classes for loss computation. If not given, all classes are supposed to have weight one.continue_training
: when continue_training is True, once initialized model will be continuely trained on every call of fit.config
: RunConfig object that controls the configurations of the session, e.g. num_cores, gpu_memory_fraction, etc.-
verbose
: Controls the verbosity, possible values:- 0: the algorithm and debug information is muted.
- 1: trainer prints the progress.
- 2: log device placement is printed.
Please login to continue.