tf.contrib.metrics.streaming_sparse_average_precision_at_k(predictions, labels, k, weights=None, metrics_collections=None, updates_collections=None, name=None)
Computes average precision@k of predictions with respect to sparse labels.
See sparse_average_precision_at_k
for details on formula. weights
are applied to the result of sparse_average_precision_at_k
streaming_sparse_average_precision_at_k
creates two local variables, average_precision_at_<k>/count
and average_precision_at_<k>/total
, that are used to compute the frequency. This frequency is ultimately returned as precision_at_<k>
: an idempotent operation that simply divides true_positive_at_<k>
by total (true_positive_at_<k>
+ false_positive_at_<k>
).
For estimation of the metric over a stream of data, the function creates an update_op
operation that updates these variables and returns the precision_at_<k>
. Internally, a top_k
operation computes a Tensor
indicating the top k
predictions
. Set operations applied to top_k
and labels
calculate the true positives and false positives weighted by weights
. Then update_op
increments true_positive_at_<k>
and false_positive_at_<k>
using these values.
If weights
is None
, weights default to 1. Use weights of 0 to mask values.
Args:
-
predictions
: FloatTensor
with shape [D1, ... DN, num_classes] where N >= 1. Commonly, N=1 andpredictions
has shape [batch size, num_classes]. The final dimension contains the logit values for each class. [D1, ... DN] must matchlabels
. -
labels
:int64
Tensor
orSparseTensor
with shape [D1, ... DN, num_labels], where N >= 1 and num_labels is the number of target classes for the associated prediction. Commonly, N=1 andlabels
has shape [batch_size, num_labels]. [D1, ... DN] must matchpredictions_idx
. Values should be in range [0, num_classes], where num_classes is the last dimension ofpredictions
. -
k
: Integer, k for @k metric. This will calculate an average precision for range[1,k]
, as documented above. -
weights
: An optionalTensor
whose shape is broadcastable to the the first [D1, ... DN] dimensions ofpredictions
andlabels
. -
metrics_collections
: An optional list of collections that values should be added to. -
updates_collections
: An optional list of collections that updates should be added to. -
name
: Name of new update operation, and namespace for other dependant ops.
Returns:
-
mean_average_precision
: Scalarfloat64
Tensor
with the mean average precision values. -
update
:Operation
that increments variables appropriately, and whose value matchesmetric
.
Please login to continue.