tf.parse_example(serialized, features, name=None, example_names=None)
Parses Example
protos into a dict
of tensors.
Parses a number of serialized Example
protos given in serialized
.
example_names
may contain descriptive names for the corresponding serialized protos. These may be useful for debugging purposes, but they have no effect on the output. If not None
, example_names
must be the same length as serialized
.
This op parses serialized examples into a dictionary mapping keys to Tensor
and SparseTensor
objects. features
is a dict from keys to VarLenFeature
and FixedLenFeature
objects. Each VarLenFeature
is mapped to a SparseTensor
, and each FixedLenFeature
is mapped to a Tensor
.
Each VarLenFeature
maps to a SparseTensor
of the specified type representing a ragged matrix. Its indices are [batch, index]
where batch
is the batch entry the value is from in serialized
, and index
is the value's index in the list of values associated with that feature and example.
Each FixedLenFeature
df
maps to a Tensor
of the specified type (or tf.float32
if not specified) and shape (serialized.size(),) + df.shape
.
FixedLenFeature
entries with a default_value
are optional. With no default value, we will fail if that Feature
is missing from any example in serialized
.
Examples:
For example, if one expects a tf.float32
sparse feature ft
and three serialized Example
s are provided:
serialized = [ features { feature { key: "ft" value { float_list { value: [1.0, 2.0] } } } }, features { feature []}, features { feature { key: "ft" value { float_list { value: [3.0] } } } ]
then the output will look like:
{"ft": SparseTensor(indices=[[0, 0], [0, 1], [2, 0]], values=[1.0, 2.0, 3.0], shape=(3, 2)) }
Given two Example
input protos in serialized
:
[ features { feature { key: "kw" value { bytes_list { value: [ "knit", "big" ] } } } feature { key: "gps" value { float_list { value: [] } } } }, features { feature { key: "kw" value { bytes_list { value: [ "emmy" ] } } } feature { key: "dank" value { int64_list { value: [ 42 ] } } } feature { key: "gps" value { } } } ]
And arguments
example_names: ["input0", "input1"], features: { "kw": VarLenFeature(tf.string), "dank": VarLenFeature(tf.int64), "gps": VarLenFeature(tf.float32), }
Then the output is a dictionary:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | { "kw" : SparseTensor( indices = [[ 0 , 0 ], [ 0 , 1 ], [ 1 , 0 ]], values = [ "knit" , "big" , "emmy" ] shape = [ 2 , 2 ]), "dank" : SparseTensor( indices = [[ 1 , 0 ]], values = [ 42 ], shape = [ 2 , 1 ]), "gps" : SparseTensor( indices = [], values = [], shape = [ 2 , 0 ]), } |
For dense results in two serialized Example
s:
[ features { feature { key: "age" value { int64_list { value: [ 0 ] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } }, features { feature { key: "age" value { int64_list { value: [] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } } ]
We can use arguments:
example_names: ["input0", "input1"], features: { "age": FixedLenFeature([], dtype=tf.int64, default_value=-1), "gender": FixedLenFeature([], dtype=tf.string), }
And the expected output is:
1 2 3 4 | { "age" : [[ 0 ], [ - 1 ]], "gender" : [[ "f" ], [ "f" ]], } |
Args:
-
serialized
: A vector (1-D Tensor) of strings, a batch of binary serializedExample
protos. -
features
: Adict
mapping feature keys toFixedLenFeature
orVarLenFeature
values. -
name
: A name for this operation (optional). -
example_names
: A vector (1-D Tensor) of strings (optional), the names of the serialized protos in the batch.
Returns:
A dict
mapping feature keys to Tensor
and SparseTensor
values.
Raises:
-
ValueError
: if any feature is invalid.
Please login to continue.