tf.sparse_placeholder(dtype, shape=None, name=None)
Inserts a placeholder for a sparse tensor that will be always fed.
Important: This sparse tensor will produce an error if evaluated. Its value must be fed using the feed_dict
optional argument to Session.run()
, Tensor.eval()
, or Operation.run()
.
For example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | x = tf.sparse_placeholder(tf.float32) y = tf.sparse_reduce_sum(x) with tf.Session() as sess: print (sess.run(y)) # ERROR: will fail because x was not fed. indices = np.array([[ 3 , 2 , 0 ], [ 4 , 5 , 1 ]], dtype = np.int64) values = np.array([ 1.0 , 2.0 ], dtype = np.float32) shape = np.array([ 7 , 9 , 2 ], dtype = np.int64) print (sess.run(y, feed_dict = { x: tf.SparseTensorValue(indices, values, shape)})) # Will succeed. print (sess.run(y, feed_dict = { x: (indices, values, shape)})) # Will succeed. sp = tf.SparseTensor(indices = indices, values = values, shape = shape) sp_value = sp. eval (session) print (sess.run(y, feed_dict = {x: sp_value})) # Will succeed. |
Args:
-
dtype
: The type ofvalues
elements in the tensor to be fed. -
shape
: The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a sparse tensor of any shape. -
name
: A name for prefixing the operations (optional).
Returns:
A SparseTensor
that may be used as a handle for feeding a value, but not evaluated directly.
Please login to continue.