tf.TensorArray.__init__(dtype, size=None, dynamic_size=None, clear_after_read=None, tensor_array_name=None, handle=None, flow=None, infer_shape=True, name=None)
Construct a new TensorArray or wrap an existing TensorArray handle.
A note about the parameter name
:
The name of the TensorArray
(even if passed in) is uniquified: each time a new TensorArray
is created at runtime it is assigned its own name for the duration of the run. This avoids name collisions if a TensorArray
is created within a while_loop
.
Args:
-
dtype
: (required) data type of the TensorArray. -
size
: (optional) int32 scalarTensor
: the size of the TensorArray. Required if handle is not provided. -
dynamic_size
: (optional) Python bool: If true, writes to the TensorArray can grow the TensorArray past its initial size. Default: False. -
clear_after_read
: Boolean (optional, default: True). If True, clear TensorArray values after reading them. This disables read-many semantics, but allows early release of memory. -
tensor_array_name
: (optional) Python string: the name of the TensorArray. This is used when creating the TensorArray handle. If this value is set, handle should be None. -
handle
: (optional) ATensor
handle to an existing TensorArray. If this is set, tensor_array_name should be None. -
flow
: (optional) A floatTensor
scalar coming from an existingTensorArray.flow
. -
infer_shape
: (optional, default: True) If True, shape inference is enabled. In this case, all elements must have the same shape. -
name
: A name for the operation (optional).
Raises:
-
ValueError
: if both handle and tensor_array_name are provided. -
TypeError
: if handle is provided but is not a Tensor.
Please login to continue.