New in version 0.15.
Note
While there was pandas.Categorical
in earlier versions, the ability to use categorical data in Series
and DataFrame
is new.
This is an introduction to pandas categorical data type, including a short comparison with R?s factor
.
Categoricals
are a pandas data type, which correspond to categorical variables in statistics: a variable, which can take on only a limited, and usually fixed, number of possible values (categories
; levels
in R). Examples are gender, social class, blood types, country affiliations, observation time or ratings via Likert scales.
In contrast to statistical categorical variables, categorical data might have an order (e.g. ?strongly agree? vs ?agree? or ?first observation? vs. ?second observation?), but numerical operations (additions, divisions, ...) are not possible.
All values of categorical data are either in categories
or np.nan
. Order is defined by the order of categories
, not lexical order of the values. Internally, the data structure consists of a categories
array and an integer array of codes
which point to the real value in the categories
array.
The categorical data type is useful in the following cases:
- A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see here.
- The lexical order of a variable is not the same as the logical order (?one?, ?two?, ?three?). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order, see here.
- As a signal to other python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).
See also the API docs on categoricals.
Object Creation
Categorical Series
or columns in a DataFrame
can be created in several ways:
By specifying dtype="category"
when constructing a Series
:
In [1]: s = pd.Series(["a","b","c","a"], dtype="category") In [2]: s Out[2]: 0 a 1 b 2 c 3 a dtype: category Categories (3, object): [a, b, c]
By converting an existing Series
or column to a category
dtype:
In [3]: df = pd.DataFrame({"A":["a","b","c","a"]}) In [4]: df["B"] = df["A"].astype('category') In [5]: df Out[5]: A B 0 a a 1 b b 2 c c 3 a a
By using some special functions:
In [6]: df = pd.DataFrame({'value': np.random.randint(0, 100, 20)}) In [7]: labels = [ "{0} - {1}".format(i, i + 9) for i in range(0, 100, 10) ] In [8]: df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels) In [9]: df.head(10) Out[9]: value group 0 65 60 - 69 1 49 40 - 49 2 56 50 - 59 3 43 40 - 49 4 43 40 - 49 5 91 90 - 99 6 32 30 - 39 7 87 80 - 89 8 36 30 - 39 9 8 0 - 9
See documentation for cut()
.
By passing a pandas.Categorical
object to a Series
or assigning it to a DataFrame
.
In [10]: raw_cat = pd.Categorical(["a","b","c","a"], categories=["b","c","d"], ....: ordered=False) ....: In [11]: s = pd.Series(raw_cat) In [12]: s Out[12]: 0 NaN 1 b 2 c 3 NaN dtype: category Categories (3, object): [b, c, d] In [13]: df = pd.DataFrame({"A":["a","b","c","a"]}) In [14]: df["B"] = raw_cat In [15]: df Out[15]: A B 0 a NaN 1 b b 2 c c 3 a NaN
You can also specify differently ordered categories or make the resulting data ordered, by passing these arguments to astype()
:
In [16]: s = pd.Series(["a","b","c","a"]) In [17]: s_cat = s.astype("category", categories=["b","c","d"], ordered=False) In [18]: s_cat Out[18]: 0 NaN 1 b 2 c 3 NaN dtype: category Categories (3, object): [b, c, d]
Categorical data has a specific category
dtype:
In [19]: df.dtypes Out[19]: A object B category dtype: object
Note
In contrast to R?s factor
function, categorical data is not converting input values to strings and categories will end up the same data type as the original values.
Note
In contrast to R?s factor
function, there is currently no way to assign/change labels at creation time. Use categories
to change the categories after creation time.
To get back to the original Series or numpy
array, use Series.astype(original_dtype)
or np.asarray(categorical)
:
In [20]: s = pd.Series(["a","b","c","a"]) In [21]: s Out[21]: 0 a 1 b 2 c 3 a dtype: object In [22]: s2 = s.astype('category') In [23]: s2 Out[23]: 0 a 1 b 2 c 3 a dtype: category Categories (3, object): [a, b, c] In [24]: s3 = s2.astype('string') In [25]: s3 Out[25]: 0 a 1 b 2 c 3 a dtype: object In [26]: np.asarray(s2) Out[26]: array(['a', 'b', 'c', 'a'], dtype=object)
If you have already codes
and categories
, you can use the from_codes()
constructor to save the factorize step during normal constructor mode:
In [27]: splitter = np.random.choice([0,1], 5, p=[0.5,0.5]) In [28]: s = pd.Series(pd.Categorical.from_codes(splitter, categories=["train", "test"]))
Description
Using .describe()
on categorical data will produce similar output to a Series
or DataFrame
of type string
.
In [29]: cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c"]) In [30]: df = pd.DataFrame({"cat":cat, "s":["a", "c", "c", np.nan]}) In [31]: df.describe() Out[31]: cat s count 3 3 unique 2 2 top c c freq 2 2 In [32]: df["cat"].describe() Out[32]: count 3 unique 2 top c freq 2 Name: cat, dtype: object
Working with categories
Categorical data has a categories
and a ordered
property, which list their possible values and whether the ordering matters or not. These properties are exposed as s.cat.categories
and s.cat.ordered
. If you don?t manually specify categories and ordering, they are inferred from the passed in values.
In [33]: s = pd.Series(["a","b","c","a"], dtype="category") In [34]: s.cat.categories Out[34]: Index([u'a', u'b', u'c'], dtype='object') In [35]: s.cat.ordered Out[35]: False
It?s also possible to pass in the categories in a specific order:
In [36]: s = pd.Series(pd.Categorical(["a","b","c","a"], categories=["c","b","a"])) In [37]: s.cat.categories Out[37]: Index([u'c', u'b', u'a'], dtype='object') In [38]: s.cat.ordered Out[38]: False
Note
New categorical data are NOT automatically ordered. You must explicitly pass ordered=True
to indicate an ordered Categorical
.
Note
The result of Series.unique()
is not always the same as Series.cat.categories
, because Series.unique()
has a couple of guarantees, namely that it returns categories in the order of appearance, and it only includes values that are actually present.
In [39]: s = pd.Series(list('babc')).astype('category', categories=list('abcd')) In [40]: s Out[40]: 0 b 1 a 2 b 3 c dtype: category Categories (4, object): [a, b, c, d] # categories In [41]: s.cat.categories Out[41]: Index([u'a', u'b', u'c', u'd'], dtype='object') # uniques In [42]: s.unique() Out[42]: [b, a, c] Categories (3, object): [b, a, c]
Renaming categories
Renaming categories is done by assigning new values to the Series.cat.categories
property or by using the Categorical.rename_categories()
method:
In [43]: s = pd.Series(["a","b","c","a"], dtype="category") In [44]: s Out[44]: 0 a 1 b 2 c 3 a dtype: category Categories (3, object): [a, b, c] In [45]: s.cat.categories = ["Group %s" % g for g in s.cat.categories] In [46]: s Out[46]: 0 Group a 1 Group b 2 Group c 3 Group a dtype: category Categories (3, object): [Group a, Group b, Group c] In [47]: s.cat.rename_categories([1,2,3]) Out[47]: 0 1 1 2 2 3 3 1 dtype: category Categories (3, int64): [1, 2, 3]
Note
In contrast to R?s factor
, categorical data can have categories of other types than string.
Note
Be aware that assigning new categories is an inplace operations, while most other operation under Series.cat
per default return a new Series of dtype category
.
Categories must be unique or a ValueError
is raised:
In [48]: try: ....: s.cat.categories = [1,1,1] ....: except ValueError as e: ....: print("ValueError: " + str(e)) ....: ValueError: Categorical categories must be unique
Appending new categories
Appending categories can be done by using the Categorical.add_categories()
method:
In [49]: s = s.cat.add_categories([4]) In [50]: s.cat.categories Out[50]: Index([u'Group a', u'Group b', u'Group c', 4], dtype='object') In [51]: s Out[51]: 0 Group a 1 Group b 2 Group c 3 Group a dtype: category Categories (4, object): [Group a, Group b, Group c, 4]
Removing categories
Removing categories can be done by using the Categorical.remove_categories()
method. Values which are removed are replaced by np.nan
.:
In [52]: s = s.cat.remove_categories([4]) In [53]: s Out[53]: 0 Group a 1 Group b 2 Group c 3 Group a dtype: category Categories (3, object): [Group a, Group b, Group c]
Removing unused categories
Removing unused categories can also be done:
In [54]: s = pd.Series(pd.Categorical(["a","b","a"], categories=["a","b","c","d"])) In [55]: s Out[55]: 0 a 1 b 2 a dtype: category Categories (4, object): [a, b, c, d] In [56]: s.cat.remove_unused_categories() Out[56]: 0 a 1 b 2 a dtype: category Categories (2, object): [a, b]
Setting categories
If you want to do remove and add new categories in one step (which has some speed advantage), or simply set the categories to a predefined scale, use Categorical.set_categories()
.
In [57]: s = pd.Series(["one","two","four", "-"], dtype="category") In [58]: s Out[58]: 0 one 1 two 2 four 3 - dtype: category Categories (4, object): [-, four, one, two] In [59]: s = s.cat.set_categories(["one","two","three","four"]) In [60]: s Out[60]: 0 one 1 two 2 four 3 NaN dtype: category Categories (4, object): [one, two, three, four]
Note
Be aware that Categorical.set_categories()
cannot know whether some category is omitted intentionally or because it is misspelled or (under Python3) due to a type difference (e.g., numpys S1 dtype and python strings). This can result in surprising behaviour!
Sorting and Order
Warning
The default for construction has changed in v0.16.0 to ordered=False
, from the prior implicit ordered=True
If categorical data is ordered (s.cat.ordered == True
), then the order of the categories has a meaning and certain operations are possible. If the categorical is unordered, .min()/.max()
will raise a TypeError
.
In [61]: s = pd.Series(pd.Categorical(["a","b","c","a"], ordered=False)) In [62]: s.sort_values(inplace=True) In [63]: s = pd.Series(["a","b","c","a"]).astype('category', ordered=True) In [64]: s.sort_values(inplace=True) In [65]: s Out[65]: 0 a 3 a 1 b 2 c dtype: category Categories (3, object): [a < b < c] In [66]: s.min(), s.max() Out[66]: ('a', 'c')
You can set categorical data to be ordered by using as_ordered()
or unordered by using as_unordered()
. These will by default return a new object.
In [67]: s.cat.as_ordered() Out[67]: 0 a 3 a 1 b 2 c dtype: category Categories (3, object): [a < b < c] In [68]: s.cat.as_unordered() Out[68]: 0 a 3 a 1 b 2 c dtype: category Categories (3, object): [a, b, c]
Sorting will use the order defined by categories, not any lexical order present on the data type. This is even true for strings and numeric data:
In [69]: s = pd.Series([1,2,3,1], dtype="category") In [70]: s = s.cat.set_categories([2,3,1], ordered=True) In [71]: s Out[71]: 0 1 1 2 2 3 3 1 dtype: category Categories (3, int64): [2 < 3 < 1] In [72]: s.sort_values(inplace=True) In [73]: s Out[73]: 1 2 2 3 0 1 3 1 dtype: category Categories (3, int64): [2 < 3 < 1] In [74]: s.min(), s.max() Out[74]: (2, 1)
Reordering
Reordering the categories is possible via the Categorical.reorder_categories()
and the Categorical.set_categories()
methods. For Categorical.reorder_categories()
, all old categories must be included in the new categories and no new categories are allowed. This will necessarily make the sort order the same as the categories order.
In [75]: s = pd.Series([1,2,3,1], dtype="category") In [76]: s = s.cat.reorder_categories([2,3,1], ordered=True) In [77]: s Out[77]: 0 1 1 2 2 3 3 1 dtype: category Categories (3, int64): [2 < 3 < 1] In [78]: s.sort_values(inplace=True) In [79]: s Out[79]: 1 2 2 3 0 1 3 1 dtype: category Categories (3, int64): [2 < 3 < 1] In [80]: s.min(), s.max() Out[80]: (2, 1)
Note
Note the difference between assigning new categories and reordering the categories: the first renames categories and therefore the individual values in the Series
, but if the first position was sorted last, the renamed value will still be sorted last. Reordering means that the way values are sorted is different afterwards, but not that individual values in the Series
are changed.
Note
If the Categorical
is not ordered, Series.min()
and Series.max()
will raise TypeError
. Numeric operations like +
, -
, *
, /
and operations based on them (e.g. Series.median()
, which would need to compute the mean between two values if the length of an array is even) do not work and raise a TypeError
.
Multi Column Sorting
A categorical dtyped column will participate in a multi-column sort in a similar manner to other columns. The ordering of the categorical is determined by the categories
of that column.
In [81]: dfs = pd.DataFrame({'A' : pd.Categorical(list('bbeebbaa'), categories=['e','a','b'], ordered=True), ....: 'B' : [1,2,1,2,2,1,2,1] }) ....: In [82]: dfs.sort_values(by=['A', 'B']) Out[82]: A B 2 e 1 3 e 2 7 a 1 6 a 2 0 b 1 5 b 1 1 b 2 4 b 2
Reordering the categories
changes a future sort.
In [83]: dfs['A'] = dfs['A'].cat.reorder_categories(['a','b','e']) In [84]: dfs.sort_values(by=['A','B']) Out[84]: A B 7 a 1 6 a 2 0 b 1 5 b 1 1 b 2 4 b 2 2 e 1 3 e 2
Comparisons
Comparing categorical data with other objects is possible in three cases:
- comparing equality (
==
and!=
) to a list-like object (list, Series, array, ...) of the same length as the categorical data. - all comparisons (
==
,!=
,>
,>=
,<
, and<=
) of categorical data to another categorical Series, whenordered==True
and thecategories
are the same. - all comparisons of a categorical data to a scalar.
All other comparisons, especially ?non-equality? comparisons of two categoricals with different categories or a categorical with any list-like object, will raise a TypeError.
Note
Any ?non-equality? comparisons of categorical data with a Series
, np.array
, list
or categorical data with different categories or ordering will raise an TypeError
because custom categories ordering could be interpreted in two ways: one with taking into account the ordering and one without.
In [85]: cat = pd.Series([1,2,3]).astype("category", categories=[3,2,1], ordered=True) In [86]: cat_base = pd.Series([2,2,2]).astype("category", categories=[3,2,1], ordered=True) In [87]: cat_base2 = pd.Series([2,2,2]).astype("category", ordered=True) In [88]: cat Out[88]: 0 1 1 2 2 3 dtype: category Categories (3, int64): [3 < 2 < 1] In [89]: cat_base Out[89]: 0 2 1 2 2 2 dtype: category Categories (3, int64): [3 < 2 < 1] In [90]: cat_base2 Out[90]: 0 2 1 2 2 2 dtype: category Categories (1, int64): [2]
Comparing to a categorical with the same categories and ordering or to a scalar works:
In [91]: cat > cat_base Out[91]: 0 True 1 False 2 False dtype: bool In [92]: cat > 2 Out[92]: 0 True 1 False 2 False dtype: bool
Equality comparisons work with any list-like object of same length and scalars:
In [93]: cat == cat_base Out[93]: 0 False 1 True 2 False dtype: bool In [94]: cat == np.array([1,2,3]) Out[94]: 0 True 1 True 2 True dtype: bool In [95]: cat == 2 Out[95]: 0 False 1 True 2 False dtype: bool
This doesn?t work because the categories are not the same:
In [96]: try: ....: cat > cat_base2 ....: except TypeError as e: ....: print("TypeError: " + str(e)) ....: TypeError: Categoricals can only be compared if 'categories' are the same
If you want to do a ?non-equality? comparison of a categorical series with a list-like object which is not categorical data, you need to be explicit and convert the categorical data back to the original values:
In [97]: base = np.array([1,2,3]) In [98]: try: ....: cat > base ....: except TypeError as e: ....: print("TypeError: " + str(e)) ....: TypeError: Cannot compare a Categorical for op __gt__ with type <type 'numpy.ndarray'>. If you want to compare values, use 'np.asarray(cat) <op> other'. In [99]: np.asarray(cat) > base Out[99]: array([False, False, False], dtype=bool)
Operations
Apart from Series.min()
, Series.max()
and Series.mode()
, the following operations are possible with categorical data:
Series
methods like Series.value_counts()
will use all categories, even if some categories are not present in the data:
In [100]: s = pd.Series(pd.Categorical(["a","b","c","c"], categories=["c","a","b","d"])) In [101]: s.value_counts() Out[101]: c 2 b 1 a 1 d 0 dtype: int64
Groupby will also show ?unused? categories:
In [102]: cats = pd.Categorical(["a","b","b","b","c","c","c"], categories=["a","b","c","d"]) In [103]: df = pd.DataFrame({"cats":cats,"values":[1,2,2,2,3,4,5]}) In [104]: df.groupby("cats").mean() Out[104]: values cats a 1.0 b 2.0 c 4.0 d NaN In [105]: cats2 = pd.Categorical(["a","a","b","b"], categories=["a","b","c"]) In [106]: df2 = pd.DataFrame({"cats":cats2,"B":["c","d","c","d"], "values":[1,2,3,4]}) In [107]: df2.groupby(["cats","B"]).mean() Out[107]: values cats B a c 1.0 d 2.0 b c 3.0 d 4.0 c c NaN d NaN
Pivot tables:
In [108]: raw_cat = pd.Categorical(["a","a","b","b"], categories=["a","b","c"]) In [109]: df = pd.DataFrame({"A":raw_cat,"B":["c","d","c","d"], "values":[1,2,3,4]}) In [110]: pd.pivot_table(df, values='values', index=['A', 'B']) Out[110]: A B a c 1.0 d 2.0 b c 3.0 d 4.0 c c NaN d NaN Name: values, dtype: float64
Data munging
The optimized pandas data access methods .loc
, .iloc
, .ix
.at
, and .iat
, work as normal. The only difference is the return type (for getting) and that only values already in categories
can be assigned.
Getting
If the slicing operation returns either a DataFrame
or a column of type Series
, the category
dtype is preserved.
In [111]: idx = pd.Index(["h","i","j","k","l","m","n",]) In [112]: cats = pd.Series(["a","b","b","b","c","c","c"], dtype="category", index=idx) In [113]: values= [1,2,2,2,3,4,5] In [114]: df = pd.DataFrame({"cats":cats,"values":values}, index=idx) In [115]: df.iloc[2:4,:] Out[115]: cats values j b 2 k b 2 In [116]: df.iloc[2:4,:].dtypes Out[116]: cats category values int64 dtype: object In [117]: df.loc["h":"j","cats"] Out[117]: h a i b j b Name: cats, dtype: category Categories (3, object): [a, b, c] In [118]: df.ix["h":"j",0:1] Out[118]: cats h a i b j b In [119]: df[df["cats"] == "b"] Out[119]: cats values i b 2 j b 2 k b 2
An example where the category type is not preserved is if you take one single row: the resulting Series
is of dtype object
:
# get the complete "h" row as a Series In [120]: df.loc["h", :] Out[120]: cats a values 1 Name: h, dtype: object
Returning a single item from categorical data will also return the value, not a categorical of length ?1?.
In [121]: df.iat[0,0] Out[121]: 'a' In [122]: df["cats"].cat.categories = ["x","y","z"] In [123]: df.at["h","cats"] # returns a string Out[123]: 'x'
Note
This is a difference to R?s factor
function, where factor(c(1,2,3))[1]
returns a single value factor
.
To get a single value Series
of type category
pass in a list with a single value:
In [124]: df.loc[["h"],"cats"] Out[124]: h x Name: cats, dtype: category Categories (3, object): [x, y, z]
String and datetime accessors
New in version 0.17.1.
The accessors .dt
and .str
will work if the s.cat.categories
are of an appropriate type:
In [125]: str_s = pd.Series(list('aabb')) In [126]: str_cat = str_s.astype('category') In [127]: str_cat Out[127]: 0 a 1 a 2 b 3 b dtype: category Categories (2, object): [a, b] In [128]: str_cat.str.contains("a") Out[128]: 0 True 1 True 2 False 3 False dtype: bool In [129]: date_s = pd.Series(pd.date_range('1/1/2015', periods=5)) In [130]: date_cat = date_s.astype('category') In [131]: date_cat Out[131]: 0 2015-01-01 1 2015-01-02 2 2015-01-03 3 2015-01-04 4 2015-01-05 dtype: category Categories (5, datetime64[ns]): [2015-01-01, 2015-01-02, 2015-01-03, 2015-01-04, 2015-01-05] In [132]: date_cat.dt.day Out[132]: 0 1 1 2 2 3 3 4 4 5 dtype: int64
Note
The returned Series
(or DataFrame
) is of the same type as if you used the .str.<method>
/ .dt.<method>
on a Series
of that type (and not of type category
!).
That means, that the returned values from methods and properties on the accessors of a Series
and the returned values from methods and properties on the accessors of this Series
transformed to one of type category
will be equal:
In [133]: ret_s = str_s.str.contains("a") In [134]: ret_cat = str_cat.str.contains("a") In [135]: ret_s.dtype == ret_cat.dtype Out[135]: True In [136]: ret_s == ret_cat Out[136]: 0 True 1 True 2 True 3 True dtype: bool
Note
The work is done on the categories
and then a new Series
is constructed. This has some performance implication if you have a Series
of type string, where lots of elements are repeated (i.e. the number of unique elements in the Series
is a lot smaller than the length of the Series
). In this case it can be faster to convert the original Series
to one of type category
and use .str.<method>
or .dt.<property>
on that.
Setting
Setting values in a categorical column (or Series
) works as long as the value is included in the categories
:
In [137]: idx = pd.Index(["h","i","j","k","l","m","n"]) In [138]: cats = pd.Categorical(["a","a","a","a","a","a","a"], categories=["a","b"]) In [139]: values = [1,1,1,1,1,1,1] In [140]: df = pd.DataFrame({"cats":cats,"values":values}, index=idx) In [141]: df.iloc[2:4,:] = [["b",2],["b",2]] In [142]: df Out[142]: cats values h a 1 i a 1 j b 2 k b 2 l a 1 m a 1 n a 1 In [143]: try: .....: df.iloc[2:4,:] = [["c",3],["c",3]] .....: except ValueError as e: .....: print("ValueError: " + str(e)) .....: ValueError: Cannot setitem on a Categorical with a new category, set the categories first
Setting values by assigning categorical data will also check that the categories
match:
In [144]: df.loc["j":"k","cats"] = pd.Categorical(["a","a"], categories=["a","b"]) In [145]: df Out[145]: cats values h a 1 i a 1 j a 2 k a 2 l a 1 m a 1 n a 1 In [146]: try: .....: df.loc["j":"k","cats"] = pd.Categorical(["b","b"], categories=["a","b","c"]) .....: except ValueError as e: .....: print("ValueError: " + str(e)) .....: ValueError: Cannot set a Categorical with another, without identical categories
Assigning a Categorical
to parts of a column of other types will use the values:
In [147]: df = pd.DataFrame({"a":[1,1,1,1,1], "b":["a","a","a","a","a"]}) In [148]: df.loc[1:2,"a"] = pd.Categorical(["b","b"], categories=["a","b"]) In [149]: df.loc[2:3,"b"] = pd.Categorical(["b","b"], categories=["a","b"]) In [150]: df Out[150]: a b 0 1 a 1 b a 2 b b 3 1 b 4 1 a In [151]: df.dtypes Out[151]: a object b object dtype: object
Merging
You can concat two DataFrames
containing categorical data together, but the categories of these categoricals need to be the same:
In [152]: cat = pd.Series(["a","b"], dtype="category") In [153]: vals = [1,2] In [154]: df = pd.DataFrame({"cats":cat, "vals":vals}) In [155]: res = pd.concat([df,df]) In [156]: res Out[156]: cats vals 0 a 1 1 b 2 0 a 1 1 b 2 In [157]: res.dtypes Out[157]: cats category vals int64 dtype: object
In this case the categories are not the same and so an error is raised:
In [158]: df_different = df.copy() In [159]: df_different["cats"].cat.categories = ["c","d"] In [160]: try: .....: pd.concat([df,df_different]) .....: except ValueError as e: .....: print("ValueError: " + str(e)) .....:
The same applies to df.append(df_different)
.
Unioning
New in version 0.19.0.
If you want to combine categoricals that do not necessarily have the same categories, the union_categoricals
function will combine a list-like of categoricals. The new categories will be the union of the categories being combined.
In [161]: from pandas.types.concat import union_categoricals In [162]: a = pd.Categorical(["b", "c"]) In [163]: b = pd.Categorical(["a", "b"]) In [164]: union_categoricals([a, b]) Out[164]: [b, c, a, b] Categories (3, object): [b, c, a]
By default, the resulting categories will be ordered as they appear in the data. If you want the categories to be lexsorted, use sort_categories=True
argument.
In [165]: union_categoricals([a, b], sort_categories=True) Out[165]: [b, c, a, b] Categories (3, object): [a, b, c]
union_categoricals
also works with the ?easy? case of combining two categoricals of the same categories and order information (e.g. what you could also append
for).
In [166]: a = pd.Categorical(["a", "b"], ordered=True) In [167]: b = pd.Categorical(["a", "b", "a"], ordered=True) In [168]: union_categoricals([a, b]) Out[168]: [a, b, a, b, a] Categories (2, object): [a < b]
The below raises TypeError
because the categories are ordered and not identical.
In [1]: a = pd.Categorical(["a", "b"], ordered=True) In [2]: b = pd.Categorical(["a", "b", "c"], ordered=True) In [3]: union_categoricals([a, b]) Out[3]: TypeError: to union ordered Categoricals, all categories must be the same
union_categoricals
also works with a CategoricalIndex
, or Series
containing categorical data, but note that the resulting array will always be a plain Categorical
In [169]: a = pd.Series(["b", "c"], dtype='category') In [170]: b = pd.Series(["a", "b"], dtype='category') In [171]: union_categoricals([a, b]) Out[171]: [b, c, a, b] Categories (3, object): [b, c, a]
Note
union_categoricals
may recode the integer codes for categories when combining categoricals. This is likely what you want, but if you are relying on the exact numbering of the categories, be aware.
In [172]: c1 = pd.Categorical(["b", "c"]) In [173]: c2 = pd.Categorical(["a", "b"]) In [174]: c1 Out[174]: [b, c] Categories (2, object): [b, c] # "b" is coded to 0 In [175]: c1.codes Out[175]: array([0, 1], dtype=int8) In [176]: c2 Out[176]: [a, b] Categories (2, object): [a, b] # "b" is coded to 1 In [177]: c2.codes Out[177]: array([0, 1], dtype=int8) In [178]: c = union_categoricals([c1, c2]) In [179]: c Out[179]: [b, c, a, b] Categories (3, object): [b, c, a] # "b" is coded to 0 throughout, same as c1, different from c2 In [180]: c.codes Out[180]: array([0, 1, 2, 0], dtype=int8)
Concatenation
This section describes concatenations specific to category
dtype. See Concatenating objects for general description.
By default, Series
or DataFrame
concatenation which contains the same categories results in category
dtype, otherwise results in object
dtype. Use .astype
or union_categoricals
to get category
result.
# same categories In [181]: s1 = pd.Series(['a', 'b'], dtype='category') In [182]: s2 = pd.Series(['a', 'b', 'a'], dtype='category') In [183]: pd.concat([s1, s2]) Out[183]: 0 a 1 b 0 a 1 b 2 a dtype: category Categories (2, object): [a, b] # different categories In [184]: s3 = pd.Series(['b', 'c'], dtype='category') In [185]: pd.concat([s1, s3]) Out[185]: 0 a 1 b 0 b 1 c dtype: object In [186]: pd.concat([s1, s3]).astype('category') Out[186]: 0 a 1 b 0 b 1 c dtype: category Categories (3, object): [a, b, c] In [187]: union_categoricals([s1.values, s3.values]) Out[187]: [a, b, b, c] Categories (3, object): [a, b, c]
Following table summarizes the results of Categoricals
related concatenations.
arg1 | arg2 | result |
---|---|---|
category | category (identical categories) | category |
category | category (different categories, both not ordered) | object (dtype is inferred) |
category | category (different categories, either one is ordered) | object (dtype is inferred) |
category | not category | object (dtype is inferred) |
Getting Data In/Out
New in version 0.15.2.
Writing data (Series
, Frames
) to a HDF store that contains a category
dtype was implemented in 0.15.2. See here for an example and caveats.
Writing data to and reading data from Stata format files was implemented in 0.15.2. See here for an example and caveats.
Writing to a CSV file will convert the data, effectively removing any information about the categorical (categories and ordering). So if you read back the CSV file you have to convert the relevant columns back to category
and assign the right categories and categories ordering.
In [188]: s = pd.Series(pd.Categorical(['a', 'b', 'b', 'a', 'a', 'd'])) # rename the categories In [189]: s.cat.categories = ["very good", "good", "bad"] # reorder the categories and add missing categories In [190]: s = s.cat.set_categories(["very bad", "bad", "medium", "good", "very good"]) In [191]: df = pd.DataFrame({"cats":s, "vals":[1,2,3,4,5,6]}) In [192]: csv = StringIO() In [193]: df.to_csv(csv) In [194]: df2 = pd.read_csv(StringIO(csv.getvalue())) In [195]: df2.dtypes Out[195]: Unnamed: 0 int64 cats object vals int64 dtype: object In [196]: df2["cats"] Out[196]: 0 very good 1 good 2 good 3 very good 4 very good 5 bad Name: cats, dtype: object # Redo the category In [197]: df2["cats"] = df2["cats"].astype("category") In [198]: df2["cats"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"], .....: inplace=True) .....: In [199]: df2.dtypes Out[199]: Unnamed: 0 int64 cats category vals int64 dtype: object In [200]: df2["cats"] Out[200]: 0 very good 1 good 2 good 3 very good 4 very good 5 bad Name: cats, dtype: category Categories (5, object): [very bad, bad, medium, good, very good]
The same holds for writing to a SQL database with to_sql
.
Missing Data
pandas primarily uses the value np.nan
to represent missing data. It is by default not included in computations. See the Missing Data section.
Missing values should not be included in the Categorical?s categories
, only in the values
. Instead, it is understood that NaN is different, and is always a possibility. When working with the Categorical?s codes
, missing values will always have a code of -1
.
In [201]: s = pd.Series(["a", "b", np.nan, "a"], dtype="category") # only two categories In [202]: s Out[202]: 0 a 1 b 2 NaN 3 a dtype: category Categories (2, object): [a, b] In [203]: s.cat.codes Out[203]: 0 0 1 1 2 -1 3 0 dtype: int8
Methods for working with missing data, e.g. isnull()
, fillna()
, dropna()
, all work normally:
In [204]: s = pd.Series(["a", "b", np.nan], dtype="category") In [205]: s Out[205]: 0 a 1 b 2 NaN dtype: category Categories (2, object): [a, b] In [206]: pd.isnull(s) Out[206]: 0 False 1 False 2 True dtype: bool In [207]: s.fillna("a") Out[207]: 0 a 1 b 2 a dtype: category Categories (2, object): [a, b]
Differences to R?s factor
The following differences to R?s factor functions can be observed:
- R?s
levels
are namedcategories
- R?s
levels
are always of type string, whilecategories
in pandas can be of any dtype. - It?s not possible to specify labels at creation time. Use
s.cat.rename_categories(new_labels)
afterwards. - In contrast to R?s
factor
function, using categorical data as the sole input to create a new categorical series will not remove unused categories but create a new categorical series which is equal to the passed in one! - R allows for missing values to be included in its
levels
(pandas?categories
). Pandas does not allowNaN
categories, but missing values can still be in thevalues
.
Gotchas
Memory Usage
The memory usage of a Categorical
is proportional to the number of categories times the length of the data. In contrast, an object
dtype is a constant times the length of the data.
In [208]: s = pd.Series(['foo','bar']*1000) # object dtype In [209]: s.nbytes Out[209]: 16000 # category dtype In [210]: s.astype('category').nbytes Out[210]: 2016
Note
If the number of categories approaches the length of the data, the Categorical
will use nearly the same or more memory than an equivalent object
dtype representation.
In [211]: s = pd.Series(['foo%04d' % i for i in range(2000)]) # object dtype In [212]: s.nbytes Out[212]: 16000 # category dtype In [213]: s.astype('category').nbytes Out[213]: 20000
Old style constructor usage
In earlier versions than pandas 0.15, a Categorical
could be constructed by passing in precomputed codes
(called then labels
) instead of values with categories. The codes
were interpreted as pointers to the categories with -1
as NaN
. This type of constructor usage is replaced by the special constructor Categorical.from_codes()
.
Unfortunately, in some special cases, using code which assumes the old style constructor usage will work with the current pandas version, resulting in subtle bugs:
>>> cat = pd.Categorical([1,2], [1,2,3]) >>> # old version >>> cat.get_values() array([2, 3], dtype=int64) >>> # new version >>> cat.get_values() array([1, 2], dtype=int64)
Warning
If you used Categoricals
with older versions of pandas, please audit your code before upgrading and change your code to use the from_codes()
constructor.
Categorical
is not a numpy
array
Currently, categorical data and the underlying Categorical
is implemented as a python object and not as a low-level numpy
array dtype. This leads to some problems.
numpy
itself doesn?t know about the new dtype
:
In [214]: try: .....: np.dtype("category") .....: except TypeError as e: .....: print("TypeError: " + str(e)) .....: TypeError: data type "category" not understood In [215]: dtype = pd.Categorical(["a"]).dtype In [216]: try: .....: np.dtype(dtype) .....: except TypeError as e: .....: print("TypeError: " + str(e)) .....: TypeError: data type not understood
Dtype comparisons work:
In [217]: dtype == np.str_ Out[217]: False In [218]: np.str_ == dtype Out[218]: False
To check if a Series contains Categorical data, with pandas 0.16 or later, use hasattr(s, 'cat')
:
In [219]: hasattr(pd.Series(['a'], dtype='category'), 'cat') Out[219]: True In [220]: hasattr(pd.Series(['a']), 'cat') Out[220]: False
Using numpy
functions on a Series
of type category
should not work as Categoricals
are not numeric data (even in the case that .categories
is numeric).
In [221]: s = pd.Series(pd.Categorical([1,2,3,4])) In [222]: try: .....: np.sum(s) .....: except TypeError as e: .....: print("TypeError: " + str(e)) .....: TypeError: Categorical cannot perform the operation sum
Note
If such a function works, please file a bug at https://github.com/pandas-dev/pandas!
dtype in apply
Pandas currently does not preserve the dtype in apply functions: If you apply along rows you get a Series
of object
dtype
(same as getting a row -> getting one element will return a basic type) and applying along columns will also convert to object.
In [223]: df = pd.DataFrame({"a":[1,2,3,4], .....: "b":["a","b","c","d"], .....: "cats":pd.Categorical([1,2,3,2])}) .....: In [224]: df.apply(lambda row: type(row["cats"]), axis=1) Out[224]: 0 <type 'int'> 1 <type 'int'> 2 <type 'int'> 3 <type 'int'> dtype: object In [225]: df.apply(lambda col: col.dtype, axis=0) Out[225]: a object b object cats object dtype: object
Categorical Index
New in version 0.16.1.
A new CategoricalIndex
index type is introduced in version 0.16.1. See the advanced indexing docs for a more detailed explanation.
Setting the index, will create create a CategoricalIndex
In [226]: cats = pd.Categorical([1,2,3,4], categories=[4,2,3,1]) In [227]: strings = ["a","b","c","d"] In [228]: values = [4,2,3,1] In [229]: df = pd.DataFrame({"strings":strings, "values":values}, index=cats) In [230]: df.index Out[230]: CategoricalIndex([1, 2, 3, 4], categories=[4, 2, 3, 1], ordered=False, dtype='category') # This now sorts by the categories order In [231]: df.sort_index() Out[231]: strings values 4 d 1 2 b 2 3 c 3 1 a 4
In previous versions (<0.16.1) there is no index of type category
, so setting the index to categorical column will convert the categorical data to a ?normal? dtype first and therefore remove any custom ordering of the categories.
Side Effects
Constructing a Series
from a Categorical
will not copy the input Categorical
. This means that changes to the Series
will in most cases change the original Categorical
:
In [232]: cat = pd.Categorical([1,2,3,10], categories=[1,2,3,4,10]) In [233]: s = pd.Series(cat, name="cat") In [234]: cat Out[234]: [1, 2, 3, 10] Categories (5, int64): [1, 2, 3, 4, 10] In [235]: s.iloc[0:2] = 10 In [236]: cat Out[236]: [10, 10, 3, 10] Categories (5, int64): [1, 2, 3, 4, 10] In [237]: df = pd.DataFrame(s) In [238]: df["cat"].cat.categories = [1,2,3,4,5] In [239]: cat Out[239]: [5, 5, 3, 5] Categories (5, int64): [1, 2, 3, 4, 5]
Use copy=True
to prevent such a behaviour or simply don?t reuse Categoricals
:
In [240]: cat = pd.Categorical([1,2,3,10], categories=[1,2,3,4,10]) In [241]: s = pd.Series(cat, name="cat", copy=True) In [242]: cat Out[242]: [1, 2, 3, 10] Categories (5, int64): [1, 2, 3, 4, 10] In [243]: s.iloc[0:2] = 10 In [244]: cat Out[244]: [1, 2, 3, 10] Categories (5, int64): [1, 2, 3, 4, 10]
Note
This also happens in some cases when you supply a numpy
array instead of a Categorical
: using an int array (e.g. np.array([1,2,3,4])
) will exhibit the same behaviour, while using a string array (e.g. np.array(["a","b","c","a"])
) will not.
Please login to continue.