-
DataFrame.pivot(index=None, columns=None, values=None)
[source] -
Reshape data (produce a ?pivot? table) based on column values. Uses unique values from index / columns to form axes of the resulting DataFrame.
Parameters: index : string or object, optional
Column name to use to make new frame?s index. If None, uses existing index.
columns : string or object
Column name to use to make new frame?s columns
values : string or object, optional
Column name to use for populating new frame?s values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns
Returns: pivoted : DataFrame
See also
-
DataFrame.pivot_table
- generalization of pivot that can handle duplicate values for one index/column pair
-
DataFrame.unstack
- pivot based on the index values instead of a column
Notes
For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods
Examples
>>> df = pd.DataFrame({'foo': ['one','one','one','two','two','two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6]}) >>> df foo bar baz 0 one A 1 1 one B 2 2 one C 3 3 two A 4 4 two B 5 5 two C 6
>>> df.pivot(index='foo', columns='bar', values='baz') A B C one 1 2 3 two 4 5 6
>>> df.pivot(index='foo', columns='bar')['baz'] A B C one 1 2 3 two 4 5 6
-
DataFrame.pivot()
2017-01-12 04:46:13
Please login to continue.