DataFrame memory usage
As of pandas version 0.15.0, the memory usage of a dataframe (including the index) is shown when accessing the info
method of a dataframe. A configuration option, display.memory_usage
(see Options and Settings), specifies if the dataframe?s memory usage will be displayed when invoking the df.info()
method.
For example, the memory usage of the dataframe below is shown when calling df.info()
:
In [1]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]', ...: 'complex128', 'object', 'bool'] ...: In [2]: n = 5000 In [3]: data = dict([ (t, np.random.randint(100, size=n).astype(t)) ...: for t in dtypes]) ...: In [4]: df = pd.DataFrame(data) In [5]: df['categorical'] = df['object'].astype('category') In [6]: df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 8 columns): bool 5000 non-null bool complex128 5000 non-null complex128 datetime64[ns] 5000 non-null datetime64[ns] float64 5000 non-null float64 int64 5000 non-null int64 object 5000 non-null object timedelta64[ns] 5000 non-null timedelta64[ns] categorical 5000 non-null category dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1) memory usage: 284.1+ KB
The +
symbol indicates that the true memory usage could be higher, because pandas does not count the memory used by values in columns with dtype=object
.
New in version 0.17.1.
Passing memory_usage='deep'
will enable a more accurate memory usage report, that accounts for the full usage of the contained objects. This is optional as it can be expensive to do this deeper introspection.
In [7]: df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 8 columns): bool 5000 non-null bool complex128 5000 non-null complex128 datetime64[ns] 5000 non-null datetime64[ns] float64 5000 non-null float64 int64 5000 non-null int64 object 5000 non-null object timedelta64[ns] 5000 non-null timedelta64[ns] categorical 5000 non-null category dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1) memory usage: 401.2 KB
By default the display option is set to True
but can be explicitly overridden by passing the memory_usage
argument when invoking df.info()
.
The memory usage of each column can be found by calling the memory_usage
method. This returns a Series with an index represented by column names and memory usage of each column shown in bytes. For the dataframe above, the memory usage of each column and the total memory usage of the dataframe can be found with the memory_usage method:
In [8]: df.memory_usage() Out[8]: Index 72 bool 5000 complex128 80000 datetime64[ns] 40000 float64 40000 int64 40000 object 40000 timedelta64[ns] 40000 categorical 5800 dtype: int64 # total memory usage of dataframe In [9]: df.memory_usage().sum() Out[9]: 290872
By default the memory usage of the dataframe?s index is shown in the returned Series, the memory usage of the index can be suppressed by passing the index=False
argument:
In [10]: df.memory_usage(index=False) Out[10]: bool 5000 complex128 80000 datetime64[ns] 40000 float64 40000 int64 40000 object 40000 timedelta64[ns] 40000 categorical 5800 dtype: int64
The memory usage displayed by the info
method utilizes the memory_usage
method to determine the memory usage of a dataframe while also formatting the output in human-readable units (base-2 representation; i.e., 1KB = 1024 bytes).
See also Categorical Memory Usage.
Byte-Ordering Issues
Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. To deal with this issue you should convert the underlying NumPy array to the native system byte order before passing it to Series/DataFrame/Panel constructors using something similar to the following:
In [11]: x = np.array(list(range(10)), '>i4') # big endian In [12]: newx = x.byteswap().newbyteorder() # force native byteorder In [13]: s = pd.Series(newx)
See the NumPy documentation on byte order for more details.
Visualizing Data in Qt applications
There is no support for such visualization in pandas. However, the external package pandas-qt does provide this functionality.
Please login to continue.